

PLOT NO. 1288, MAHATAPALLA, BAJAPUR, KHURDA, PIN-752060 Session: 2023-2024

Course Name: DIPLOMA Theory/Practical: Theory Branch Name: ELECTRICAL
Subject Name: Th.3: Electrical Measurement &

Instrumentation

Teacher Name: SUSHREE SANGITA MOHAPATRA

Section: A Semester: 4

Credit '--' External Evaluation(Marked) '80' Internal Evaluation(Marked) '20'

Text Books:

SI.No	Text Books Electrical & Electronic Measurements and Instrumentation, R.K.Rajput : S.Chand				
1					
	Electric Measurement and Measuring instruments, A.K. Sawhney: Dhanpat Rai & Co				

Reference books:

SI.No	Reference books
	Electrical and Electronics Measuring instruments and Measurement, J. B. Gupta: S K Kataria & Sons

SI.No	Course Outcomes			
1	To acquire the knowledge of selecting various types of instruments for similar purpose like			
	measurement of voltage, current, pow			
2	To learn the connection of different types of electrical measuring instruments			
3	To learn the adjustment of different instruments			
4	To understand the working principle and construction of the electrical instruments			
5	To solve different numerical problems associated with the instruments based on their design Formula			
6	To acquire knowledge of the construction, characteristics and methods of usage of sensors and transducers.			

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
1	1	MEASURING INSTRUMENTS	Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance	Cos 1	
2	2	MEASURING	Classification of measuring instruments	Cos 1	
3	3	MEASURING INSTRUMENTS	Explain Deflecting, controlling and damping arrangements in indicating type of	Cos 1	

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			instruments		
4	4	MEASURING INSTRUMENTS	Calibration of instruments.	Cos 1	
5	5	ANALOG AMMETERS AND VOLTMETERS	Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments	Cos 2	
6	6	ANALOG AMMETERS AND VOLTMETERS	Describe Construction, principle of operation, errors, ranges merits and demerits of Moving iron type instruments		
7	7	ANALOG AMMETERS AND VOLTMETERS	Permanent Magnet Moving coil type instruments	Cos 2	
8	8	ANALOG AMMETERS AND VOLTMETERS	Dynamometer type instruments	Cos 2	
9	9	ANALOG AMMETERS AND VOLTMETERS	Rectifier type instruments	Cos 2	
10	10	ANALOG AMMETERS AND VOLTMETERS	Induction type instruments	Cos 2	
11	11	ANALOG AMMETERS AND VOLTMETERS	Extend the range of instruments by use of shunts and Multipliers	Cos 2	
12	12	ANALOG AMMETERS AND VOLTMETERS	Solve Numerical	Cos 2	
13	13	WATTMETERS AND MEASUREMENT OF POWER	Describe Construction, principle of working of Dynamometer type wattmeter. (LPF and UPF type)	Cos 3	
14	14	WATTMETERS AND MEASUREMENT OF POWER	The Errors in Dynamometer type wattmeter and methods of their correction	Cos 3	
15	20 20 20 20 20 20 20 20 20 20 20 20 20 2	WATTMETERS AND MEASUREMENT OF POWER	Discuss Induction type watt meters	Cos 3	

SL No.	Lecture	Module/Unit No.			
	No.		Topic To Be Taught	Cos	Reference Material Links
16		ENERGYMETERS AND MEASUREMENT OF ENERGY	Introduction	Cos 4	
		ENERGYMETERS AND MEASUREMENT OF ENERGY	Single Phase Induction type Energy meters – construction, working principle and their compensation & adjustments	Cos 4	
18	18	ENERGYMETERS AND MEASUREMENT OF ENERGY	Testing of Energy Meters	Cos 4	
19	19	MEASUREMENT OF SPEED, FREQUENCY AND POWER FACTOR	Tachometers, types and working principles	Cos 4	
20	20	MEASUREMENT OF SPEED, FREQUENCY AND POWER FACTOR	Principle of operation and construction of Mechanical and Electrical resonance Type frequency meters	Cos 4	
21	21	MEASUREMENT OF SPEED, FREQUENCY AND POWER FACTOR	Principle of operation and working of Dynamometer type single phase and three phase power factor meters	Cos 4	
22	22	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Classification of resistance Measurement of low resistance by potentiometer method	Cos 4	
23	23	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Classification of resistance Measurement of medium resistance by wheat Stone bridge method	Cos 4	
24	24	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Measurement of high resistance by loss of charge method	Cos 4	
25	25	RESISTANCE,	Construction, principle of operations of Megger & Earth tester		

L No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
		CAPACITANCE	for insulation resistance and earth resistance measurement respec		
26	26	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Construction and principles of Multimeter. (Analog and Digital)	Cos 4	
27	27	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Measurement of inductance by Maxewell's Bridge method	Cos 5	
28	28	MEASUREMENT OF RESISTANCE, INDUCTANCE& CAPACITANCE	Measurement of capacitance by Schering Bridge method	Cos 5	
29	29	SENSORS AND TRANSDUCER	Define Transducer, sensing element or detector element and transduction elements		
30	30	SENSORS AND TRANSDUCER	Classify transducer. Give examples of various class of transducer	Cos 6	
31	31	SENSORS AND TRANSDUCER	Linear and angular motion potentiometer	Cos 6	
32	32	SENSORS AND TRANSDUCER	Thermistor and Resistance thermometers	Cos 6	
33	33	SENSORS AND TRANSDUCER	Wire Resistance Strain Gauges	Cos 6	
34	34	SENSORS AND TRANSDUCER	Principle of linear variable differential Transformer (LVDT	Cos 6	
35	35	SENSORS AND TRANSDUCER	Uses of LVDT	Cos 6	
36	36	SENSORS AND TRANSDUCER	General principle of capacitive transducer	Cos 6	
37	37	SENSORS AND TRANSDUCER	Variable area capacitive transducer	Cos 6	
38	38	SENSORS AND TRANSDUCER	Change in distance between plate capacitive transducer	Cos 6	
39	39	SENSORS AND TRANSDUCER	Piezo electric Transducer and Hall Effect Transducer with their applications	Cos 6	

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
40	40	OSCILLOSCOPE	Principle of operation of Cathode Ray Tube		
41	41	OSCILLOSCOPE	Principle of operation of Oscilloscope (with help of block diagram)	Cos 1	
42	42	OSCILLOSCOPE	Measurement of DC Voltage & curren	Cos 1	
43	43	OSCILLOSCOPE	Measurement of AC Voltage, current, phase & frequency	Cos 1	

THE RESERVED OF THE PROPERTY O

Subject Teacher 102/2024

MDarle 12024 HODIS102/2024

Principal

PLOT NO. 1288, MAHATAPALLA, BAJAPUR, KHURDA, PIN-752060 Session: 2023-2024

Course Name: DIPLOMA Theory/Practical: Theory Branch Name: ELECTRICAL
Subject Name: Th.4: Generation, Transmission and

Distribution

Teacher Name: R.KRISHNA RANI

Section : A Semester : 4

Credit '--' External Evaluation(Marked) '80' Internal Evaluation(Marked) '20'

Text Books:

SI.No	Text Books	
1	Principles of Power System, V. K. Mehta, S Chand	
2	Power System Engineering, D. P. Kothari, IJ Nagrath: TMH	

Reference books:

SI.No	Reference books
1	A text book of Power System Engineering, A Chakrabarti, M L Soni, P V Gupta, U S Bhatnagar
	"Dhanpat Rai & Co

SI.No	Course Outcomes
1	Different schemes of power generation with their block diagram
2	Mechanical and electrical design of transmission lines and numerical problems
3	Types of cables and their methods of laying and testing
4	Different schemes of distribution with problem solving
5	Different types of sub-stations
6	Economic aspects of power supply system with problem and type of tariff of electricit

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
1	1	GENERATION OF ELECTRICITY	Elementary idea on generation of electricity from Thermal, Hydel, Nuclear, Power station	Cos 1	
2	2	GENERATION OF ELECTRICITY	Elementary idea on generation of electricity from Thermal, Hydel, Nuclear, Power station	Cos 1	
3	3	GENERATION OF ELECTRICITY	Introduction to Solar Power Plant	Cos 1	

Reference Material Links SL No. Lecture Module/Unit No. Topic To Be Taught Cos No. (Photovoltaic cells) GENERATION OF Introduction to Solar Cos 1 ELECTRICITY Power Plant (Photovoltaic cells) Cos 1 Layout diagram of 5 GENERATION OF generating stations ELECTRICITY Layout diagram of Cos 1 6 6 GENERATION OF generating stations ELECTRICITY Cos 2 Layout of TRANSMISSION OF transmission and ELECTRIC POWER distribution scheme Cos 2 TRANSMISSION OF | Voltage Regulation & 8 efficiency of ELECTRIC POWER transmission Cos 2 State and explain TRANSMISSION OF 9 9 Kelvin's law for ELECTRIC POWER economical size of conductor Cos 2 State and explain TRANSMISSION OF 10 10 Kelvin's law for ELECTRIC POWER economical size of conductor Cos 2 Corona and corona TRANSMISSION OF 11 loss on transmission ELECTRIC POWER lines Cos 3 Types of supports, OVER HEAD LINES 12 12 size and spacing of conducto Cos 3 Types of supports, OVER HEAD LINES 13 13 size and spacing of conducto Cos 3 Types of conductor OVER HEAD LINES 14 14 materials Cos 3 State types of OVER HEAD LINES 15 15 insulator and cross arms Sag in overhead line Cos 3 OVER HEAD LINES 16 16 with support at same level and different level Cos 3 Sag in overhead line OVER HEAD LINES 17 17 with support at same level and different level Cos 3 Simple problem on OVER HEAD LINES 18 18 sag

bil No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
19	19	PERFORMANCE OF SHORT & MEDIUM LINES	Calculation of regulation and efficiency	Cos 4	
20	20	PERFORMANCE OF SHORT & MEDIUM LINES	Calculation of regulation and efficiency	Cos 4	
21	21	PERFORMANCE OF SHORT & MEDIUM LINES	Calculation of regulation and efficiency	Cos 4	
22	22	PERFORMANCE OF SHORT & MEDIUM LINES	Calculation of regulation and efficiency	Cos 4	
23	23	EHV TRANSMISSION	Reasons for adoption of EHV AC transmission	Cos 2	
24	24	EHV TRANSMISSION	Reasons for adoption of EHV AC transmission	Cos 2	
25	25	EHV TRANSMISSION	Problems involved in EHV transmission	Cos 2	
26	26	EHV TRANSMISSION	Problems involved in EHV transmission	Cos 2	
27	27	EHV TRANSMISSION	Advantages and Limitations of HVDC transmission system	Cos 2	
28	28	EHV TRANSMISSION	Advantages and Limitations of HVDC transmission system	Cos 2	
29	29	DISTRIBUTION SYSTEMS	Introduction to Distribution System	Cos 4	
30	30	DISTRIBUTION SYSTEMS	Connection Schemes of Distribution System: (Radial, Ring Main and Inter connected system	Cos 4	
31	31	DISTRIBUTION SYSTEMS	Distributor fed at one End	Cos 4	
32	32	DISTRIBUTION SYSTEMS	Distributor fed at both the ends	Cos 4	
33	33	DISTRIBUTION SYSTEMS	Ring distributors	Cos 4	
34	34	DISTRIBUTION SYSTEMS	AC distribution system	Cos 4	
35	35	DISTRIBUTION SYSTEMS	Method of solving AC distribution problem	Cos 4	
36	36	DISTRIBUTION SYSTEMS	Three phase four wire star connected	Cos 4	

/					
NO.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			system arrangement.	-	
37	37	UNDERGROUND	Cable insulation and classification of cables	Cos 3	
38	38	UNDERGROUND CABLES	Types of L. T. & H.T. cables with constructional features		
39	39	UNDERGROUND	Types of L. T. & H.T. cables with constructional features	Cos 3	
40	40	UNDERGROUND	Methods of cable lying	Cos 3	
41	41	UNDERGROUND	Localization of cable faults: Murray and Varley loop test for short circuit fault / Earth fault	Cos 3	
42	42	UNDERGROUND	Localization of cable faults: Murray and Varley loop test for short circuit fault / Earth fault	Cos 3	
43	43	ECONOMIC ASPECTS	Causes of low power factor and methods of improvement of power factor in power system	l .	
44	44	ECONOMIC ASPECTS	Factors affecting the economics of generation: load curves	Cos 6	
45	45	ECONOMIC ASPECTS	Demand factor	Cos 6	
46	46	ECONOMIC ASPECTS	Maximum demand	Cos 6	
47	47	ECONOMIC ASPECTS	Load facto	Cos 6	
48	48	ECONOMIC	Peak load and Base load on power station	Cos 6	
49	49	TYPES OF TARIFF	Desirable characteristic of a tariff	Cos 6	
50	50	TYPES OF TARIFF	Explain flat rate, block rate, two part and maximum demand tariff. (Solve	Cos 6	

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			Problems)		
51	51	SUBSTATION	Layout of LT, HT and EHT substation	Cos 5	
52	52	SUBSTATION	Earthing of Substation, transmission and distribution lines	Cos 5	

R. Krieshna Rani.

Subject Teacher

HOD

Principal

PLOT NO. 1288, MAHATAPALLA, BAJAPUR, KHURDA, PIN-752060 Session: 2023-2024

Course Name: DIPLOMA Theory/Practical: Theory

> Section: A Semester: 4

Branch Name: ELECTRICAL Subject Name: Th.2: Analog Electronics & OP-Amp

Teacher Name: IPSITA SAHOO

Credit "External Evaluation(Marked) '80' Internal Evaluation(Marked) '20'

Text Books:

SI.No	Text Books
	Sanjeev Gupta Electronic Devices and Circuits Dhanpat Rai Publications
	R.S SEDHA Electronics circuit S.CHAND

Reference books:

SI.No	Reference books	
1	R.S SEDHA Electronics circuit S.CHAND	

Course Outcomes
To develop knowledge on the characteristics of different types of diodes, transistors, UJT, FET and to
draw a comparison in thei
To develop knowledge of their application.
To develop knowledge of different oscillator circuits and to identify the difference between them and
their frequency relation.
To develop knowledge of operational amplifiers and their application in the field.

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
1	1	1	P-N Junction DiodeWorking of Diode	Cos 1	
2	2	1	V-I characteristic of PN junction Diode.	Cos 1	
3	3	1	DC load line	Cos 1	
4	4	1	Important terms such as Ideal Diode, Knee voltage		
5	5		Junctions break down Zener breakdown Avalanche breakdown		
6	6	1	P-N Diode clipping Circuit.	Cos 1	
7	7	1	P-N Diode clamping Circuit	Cos 1	

3L No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
8	8	2	Thermistors, Sensors & barretters	Cos 2	
9	9	2	Zener Diode	Cos 2	
10	10	2	Tunnel Diode	Cos 2	
11	11	2	PIN Diode	Cos 2	
12	12	3	Classification of rectifiers	Cos 2	
13	13	3	Analysis of half wave, full wave centre tapped and Bridge rectifiers	Cos 3	
14	14	3	DC output current and voltage	Cos 3	
15	15	3	RMS output current and voltage	Cos 3	
16	16	3	Rectifier efficiency Ripple factor	Cos 3	
17	17	3	Regulation	Cos 3	
18	18	3	Transformer utilization factor		
19	19	3	Peak inverse voltage	Cos 3	
20	20	3	Shunt capacitor filter Choke input filter? filter	Cos 3	
21	21	4	Principle of Bipolar junction transistor	Cos 4	
22	22	4	Different modes of operation of transistor		
23	23	4	Current components in a transistor	Cos 4	
24	24	4	Transistor as an amplifier	Cos 4	
25	25	4	Transistor circuit configuration & its characteristics	Cos 3	
26	26	4	CB Configuration	Cos 4	
27	27	4	CE Configuration	Cos 3	
28	28	4	CC Configuration	Cos 4	
29	29	5	Transistor biasing	Cos 4	
30	30	5	Stabilization	Cos 4	
31	31	5	Stability factor	Cos 4	
32	32	5	Different method of Transistors Biasing	Cos 4	
33	33		Base resistor method	Cos 4	
34	34		Collector to base bias	Cos 4	
35	35	5	Collector to base bias	Cos 4	

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
36	36	6	Practical circuit of	Cos 4	
37	37	6	DC load line and DC equivalent circuit	Cos 4	
38	38	6	AC load line and AC equivalent circuit	Cos 4	
39	39	6	Calculation of gain	Cos 4	
40	40	6	Phase reversa	Cos 4	
41	41	6	H-parameters of transistors	Cos 4	
42	42	6	Simplified H- parameters of transistors	Cos 4	
43	43	6	Generalised approximate model	Cos 4	
44	44	6	Analysis of CB, CE, CC amplifier using generalised approximate model	Cos 4	
45	45	6	Multi stage transistor amplifier R.C. coupled amplifier Transformer coupled amplifier	Cos 4	
46	46	6	Feed back in amplifier , General theory of feed back ,Negative feedback circuit Advantage of negative feed back	Cos 4	
47	47	6	Power amplifier and its classification Difference between voltage amplifier and power amplifier	Cos 4	
48	48	6	Class A push – pull amplifier, Class B push – pull amplifier	Cos 4	
49	49	6	Oscillators , Types of oscillators	Cos 4	
50	50	6	Essentials of transistor oscillator, Principle of operation of tuned collector, Hartley, colpitt, phase shift, weinbridge osci	Cos 4	
51	51	7	Essentials of transistor oscillator	Cos 4	

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			6.13.3 Principle of operation of tuned collector, Hartley, colpitt, phase shift, weinbridge		
52	52	7	Advantages of FET over BJT	Cos 4	
53	53	7	Principle of operation of BJT	Cos 3	
54	54	7	DC drain resistance	Cos 4	
55	55	7	AC drain resistance	Cos 4	
56	56	7	Trans-conductance	Cos 4	
57	57	8	1 General circuit simple of OP-AMP and IC – CA – 741 OP AMP 8.2 Operational amplifier stages	Cos 4	
58	58	8	Equivalent circuit of operational amplifie, Open loop OP-AMP configuration, OPAMP with fed back	Cos 4	
59	59	8	Non inverting OP- AMP Voltage follower & buffer Differential amplifier	Cos 4	
60	60	8	Adder or summing amplifier, Sub tractor Integrator Differentiator, Comparator	Cos 4	

Tosta Schoo Subject Teacher HOD

Principal

PLOT NO. 1288, MAHATAPALLA, BAJAPUR, KHURDA, PIN-752060 Session: 2023-2024

Course Name: DIPLOMA
Theory/Practical: Theory

Section: A Semester: 4 Branch Name: ELECTRICAL
Subject Name: Th.1: Energy Conversion-I
Teacher Name: GOPAL CH MARTHA

Credit '--' External Evaluation(Marked) '80' Internal Evaluation(Marked)

'20'

Text Books:

SI.No	Text Books	
1	Electrical Technology – II B. L. Thareja and A. K. Thareja S.Chand	
2	Electrical Technology J. B. Gupta	

Reference books:

SI.No	Reference books	
1	Electrical Technology J. B. Gupta	
2	Electric Machine Ashfaq Husain	

SI.No	Course Outcomes					
1	Know function and working principles about DC Generator and its application					
	Know function and working principles about DC Motor and its application					
3	Know function and working principles about single phase transformer and its application					
4	Know function and working principles about single Auto transformer and its application					
5	Know function and working principles about C.T and V.T and its application					

SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
1	1	1	Operating principle of generator	Cos 1	
2	2	1	Constructional features of DC machine	Cos 1	
3	3	1	Yoke, Pole & field winding, Armature, Commutator.	Cos 1	
4	4	1	Armature winding, back pitch, Front pitch, Resultant pitch and commutator- pitch	Cos 1	
5	5	1	Simple Lap and wave winding, Dummy coils	Cos 1	
6	6	1	Different types of D.C. machines (Shunt,	Cos 1	

L No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			Series and		
			Compound)		
7	7	1	Derivation of EMF	Cos 1	
			equation of DC		
			generators. (Solve		
			problems)		
8	8	1	Losses and efficiency	Cos 1	
			of DC generator.		
			Condition for		
			maximum efficiency		
			and numerical		
			problems.	Cos 1	
9	9	1	Armature reaction in	COST	
			D.C. machine	Cos 1	
10	10	1	Commutation and	CUST	
			methods of improving		
			commutation	Cos 1	
11	11	1	Role of inter poles	003 1	
			and compensating winding in		
			commutation.		
			Characteristics of	Cos 1	
12	12	1	D.C. Generators		
			Application of different	Cos 1	
13	13		types of D.C.		
			Generators		
	11	1	Concept of critical	Cos 1	
14	14		resistance and critical		
			speed of DC shunt		
			generator		
. –	1.5	1	Conditions of Build-up	Cos 1	
15	15		of emf of DC		
			generator.		
10	16	1	Condition of parallel	Cos 1	
16	16		operation		
4-7	17	1	Parallel operation of	Cos 1	
17	17		D.C. Generators.		
1.0	10	1	Uses of D.C	Cos 1	
18	18		generators.		
	40	1	Numeric about DC	Cos 1	
19	19		Generator		
20		2	Basic working	Cos 2	
	20	2	principle of DC motor		
			Significance of back	Cos 2	
21	21	2	emf in D.C. Motor.		
	THE R. LEWIS CO., LANSING, MICH.			0 0	
	22		Voltage equation of	Cos 2	

L No.	Lecture	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
	No.		condition for		
			maximum power outpu		
23	23	2	Numeric about dc Motor	Cos 2	
24	24	2	Derive torque equation (solve problems)	Cos 2	
25	25	2	Characteristics of series motor	Cos 2	
26	26	2	Characteristics of shunt motor	Cos 2	
27	27	2	Characteristics of of compound motor	Cos 2	
28	28	2	Application of dc motor	Cos 2	
29	29	2	Starting method of shunt, series and compound motors.	Cos 2	
30	30	2	Speed control of D.C shunt motors by Flux control method.	Cos 2	
31	31	2	. Armature voltage Control method. Solve problems		
32	32	2	Speed control of D.C. series motors by Field Flux control method, Tapped field method and series-parallel method	Cos 2	
33	33	2	Determination of efficiency of D.C. Machine by Brake test method(solve numerical problems)	Cos 2	
34	34	2	Determination of efficiency of D.C. Machine by Swinburne's Test method	Cos 2	
35	35	2	Solve numerical problems	Cos 2	
36	36	2	Losses, efficiency and power stages of D.C. motor	Cos 2	

AFT

a N					
SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
37	37	2	(Solve numerical problems	Cos 2	
38	38	2	Uses of D.C. motors	Cos 2	
39	39	3	Working principle of transformer	Cos 3	
40	40	3	Constructional feature of Transformer	Cos 3	
41	41	3	Arrangement of core & winding in different types of transformer.	Cos 3	
42	42	3	Brief ideas about transformer accessories such as conservator, tank, breather, and explosion vent etc.	Cos 3	
43	43	3	Explain types of cooling methods	Cos 3	
44	44	3	State the procedures for Care and maintenance.	Cos 3	
45	45	3	EMF equation of transformer.	Cos 3	
46	46	3	Ideal transformer voltage transformation ratio	Cos 3	
47	47	3	Operation of Transformer at no load, on load with phasor diagrams	Cos 3	
48	48	3	Equivalent Resistance, Leakage Reactance and Impedance of transformer.	Cos 3	
49	49	3	To draw phasor diagram of transformer on load, with winding Resistance	Cos 3	
50	50	3	Magnetic leakage with using upf, leading pf and lagging pf load.	Cos 3	
51	51	3	To explain Equivalent circuit and solve numerical problems.	Cos 3	
52	52	3	Approximate & exact	Cos 3	

15		NA CONTRACTOR AND	- 1.5 y		D. C Natorial Links
SL No.	Lecture No.	Module/Unit No.	Topic To Be Taught	Cos	Reference Material Links
			voltage drop calculation of a Transformer.		
53	53	3	Regulation of transformer.	Cos 3	
54	54	3	Different types of losses in a Transformer	Cos 3	
55	55	3	Open circuit and Short Circuit test.(Solve numerical problems)	Cos 3	
56	56	3	Explain Efficiency, efficiency at different loads and power factors, condition for maximum efficiency (solve problems)	Cos 3	
57	57	4	Constructional features of Auto transformer. 4.2. Working principle of single phase Auto Transformer.	Cos 4	
58	58	4	Comparison of Auto transformer with an two winding transformer (saving of Copper). Uses of Auto transformer	Cos 4	
59	59	4	Explain Tap changer with transformer (on load and off load condition)	Cos 4	
60	60	5	Explain Current Transformer and Potential Transformer	Cos 5	
61	61	5	Define Ratio error, Phase angle error, Burden.	Cos 5	
62	62	5	Uses of C.T. and P.T	Cos 6	

Subject Teacher

HOD

Anna Principal