Study Material

On

Cloud Computing

Department of Computer Science \& Engineering

CAPITAL ENGINEERING COLLEGE

Mahatapalla, Khordha, Bhubaneswar, Odisha: 752060
(Affiliated to Biju Patnaik University of Technology, Odisha and SCTE \& VT,
Odisha, Approved by AICTE, New Delhi and Recognised by Govt. of Odisha)

Chapter-1 (omprofuetion to (loud Compering)
Cload Computing

Internet Dota procesing or D ata Staroge

Detn
if is the delinery of on-demand compating Services oner the internet on a pay as you go basis.

Example
Gmail, Grigle Drike, Yrutbe, amazon orive
1.1 Histarical denapprent / Erration of elrad computing Coapcomputing is not latest teennology. (lout. Compating has evolved (teneloped gropucily) throush a nuniber of phases Ghich inclages.
(1) Grid computing
(2) ufisity computing
(3) Soltarase as a Serrice
(4) Cloug Computing
(4) clout enputing
(2)
\rightarrow tilext generation chiterret computing
(3) Surtcare of

1

1 (2) uficity
(1) Grid computing
\rightarrow Silving lasge
\rightarrow obtering to appeications
\rightarrow Nexut-genesation
pata Centres.
1
 servicel
\Rightarrow introrfoeed in late 19908.
(Eirlation or Cloud Compating)
1.2 risim or cloud Compuping
in bimplest ferms, clowd Computing means storing ary accesing the dape and progrons on gemete servers that are horped on the chterrot chspeod of computer's hard prive or local server. Cloud Computing is afso refartred as internex based computing

There are following vision of cloud computing

1. Cloud competing provides the facility to provision Vistaof harferare, runtime enrorament and Services to a person having money.
2. These all things can be led as long as they are nested by the lesser.
3. The achale Collection of computing System is transomed chto collection of afilities, which can be provisioned and composed together to deploy systems ch hours rather than drys, with no maintenance cart.
4. The lang term vision or cloud computing is that IT Services are traded as citizens in an open market anthout teannorgica and legal barriers.
5. A cloud provider con also become a consumes of a competition services in order to kaltil its promises to Customers
6. A cloud provider can also be a buyer of a compefitine service to bertill its promises to customers.
1.3 Chanoeteratics it cloud computing
(1) on demand Selk-Serrice: competing Copubisities Swh as neteronk Stroage con be bet-op whenever requinid urethout requising any haman interaction.
(2) Borad reterork aceops: A11 Capabicities are arailasle over a neterirk can be acausble from angulse by means of any client plathtros (e.g mosile phones, tableps, (aptops any anorstiong)
(3) Pesarsa poling: Clong Serrice provider hes Computer's nesources to matiple Consumers asith ditferent physic of resourees otynamically arsigned accoraling to Consumer demand (el.g stroge, procesing, memory and netwrors beadasitth)
(4) Roprit elasticity: Capobreities Can be elasticay Retup an scape rapilly oeersting to Consumer tomand.
(5) Merared Service: Resounce crage can be montored, comprilled and reported, provitiy transparency bor both the provider anf Consamer.
(6) XPO mointenance 1 eary maintenance
(7) Security: Copy or our dota on is lake on the ather.
1.4

Cloud Completing refegence model
Throee types of cloug competing referenee models are
(1) I aas (Infraspueture as a Service)
(2) Paas. (plattorm as a Serrice)
(3) Saus (Sitterare as a Serrice)
(1) Iaus (Intrastrooture as a service)
\rightarrow Virtuepized Servers
\rightarrow Stirage are netararking
Examples
Amazon EC2, S_{3}, Rishtscote, VCloup.
(2) (platform as a service) \rightarrow paas
\Rightarrow Runtime environment fro appeications.
\rightarrow Development anf pataprocasing platforms
Bxomples: Cingous Azure, Haqrup, Gergle AppEngine
(3) Soltarare as a Service - Saas
\rightarrow Enf luer applications
\rightarrow Scientikic applications.
\rightarrow offece Automation, photo editing
\Rightarrow Social neturooking
Examples
Google Documents, Faubrok, Flickr.
1.5 Clous Compating Envirament
(1) Appricotion doeralapment
(2) Intrastruepare and Syetem derefopment
(3) Compating platforms ardtechnologies
(1) Afpeication denelopment
fypeications that lenerage cload Compating bevos' from its Copabieity to dynamically Seape on demend
Example: Thes applications.
Scientific Applications Can require hage computing capuity to pertorm largue-sore experimems once in acuhile. So it is not kerible to buy the inkraspracture supporting them. in the's care, Clour computing canke the Slation
(2) Intrastruefure ard Syttem pencopment.
\rightarrow Sitraepruetare as - a Service Selutions provite the Copobicities to adp arp nemove nesources.
\rightarrow plaftorm as a Service Solutions Contr) the provisioncing proces and lese of resocures. These can be lithed Completely transparent to developers on Subject to fine control.
(3) Compating platforms and terniogies
\rightarrow Amazon Cneb services (Aws) - AWS is a Cloud Computing platterm that provides Customers with a aide array or cloud services.
\rightarrow Google AppErgine: it is a plattoom as a Service and cloud Computing plattorm tor deraloping ant hosting cub applications in Gergle-managed. Ddata Centerp.
$\rightarrow \quad$ Micris.if Azure : if is micrositts public Cluad Computing plattorm. if prorifes a range or cland searrices, inclating those for Compute, andytics, storage and neferanting
\rightarrow Hadorp: Hadorp is a jara-hased tramearisk wed to maripulate dota in the claod ur on premises. Hadnp can be critalled on cloud seovers to manage biggata arkere as clond afone can not manage data arithout hadoup inct.
1.6 Cloud Services Pequirements

1. Etticiency / Cost trequetion: By lsing cloug intrautruature, yo don't have Spent huga comours of mony on parchosing and maintaining Squipmeat.
2. Data Secwrity: cloug olters mary adrencer Searsity features that gearartae thef data is securaly stonet ant horfled. Clout stroage providers implement bakline protections fro their plaflorms ard the data they procers, Such as aushenfication, ocies Confrol and eneryption.
3. Secobieitly: Ditherrif Compories have dithenf IT aeeds - a large enterprise of lrot. Employaes Cran's have the 8 ame IT requicrements as a start-up. Using cloud is a groof solution because it enthles enperprise to etficiently - and quick ly scote op/ dorn acoroting to business demends.
4. Mohicity: Clang Compatiog alows mobile aceers to Comperape tafa ria smaxptiones onf terices.
5. Disarter recovery: Dafa lise is majar concers for al ogganizations, ofug arith tata searity stroing your fata ch the crood guarntees that data is afcrays arailable, evenit your equigment VKe. laptops or $p(s$, is domage p. Cloud-barep services provipe diak pata neconem bor all kits of emergency scenarios.
6. Contre): C[oup enomies you complepe hisibieify Qne confrel oner your fata. You con enily pecige which berers hare cuhat lent of acers to what tata.
7. Market reach: Deneloping in the cloud enobles weers to get their Dappeications to. market quickly.
8. Aufomefic Sottome coptapes: Clond based appeicefions aufomotically sefpach anf
themselues. appate themselwes.
1.7 Clouef anf dynanic Intrasprecture

(Cload and fyramic infraitrueture)
9. Sesvice manogament: This type of Spera facirity ${ }^{\circ} r$ b tanefiondity provido to clay IT services hy the clout Service proviters. This facility inclatel visibieitg, ayomation anp confry to derinuring the first clog IT service.
10. Aret manageomp: ch this antes or property culich is invilut in provifing the cpout serrices are getting managed.
11. Visturizatio ary Conscrifation: Consarifation is on effrort to requace the Cixt of a fechrioggy by imporiving ins opesafing efficiency \& effuctivenees. it means migrating trom lange nomber of resources to becur one, which is pore by Wispeodization fecharlogy.
12. Informafion infraufrefere: if helps the busines corganizations to achiere the tollowing chtomation compliance, araiobikity of sesoures refiention anf recurity objecfines.
13. Energy - Etticiency: Hire the IT intrasprucera or ogarization Sarfainable: it means if is not likely to qamage or etheet any atherting
b. Securoty: This ciout introstricetere is dexponsible tro risk management. Kuk mangem manogment pefors to the rixks intilued in the serrias which are bking procided by the clad-Sirvice proviters.
14. Resilience: This chfrouprexture provides the leature of resilience means the Services are resijient. it means the inkrasfrueture is sefe from all Sides. The IT aperationg willnit be easily get offeretod.
1.8 Clow adiption
cload adpption is a stratayy bed ingenterpoise to impore the scacebicity of chterret-baied dotsax copabieities while redaing corf and risk.
Whenes ciond f diption - and buly?
A varing or gnfupries benefit trom coond ofoption, cncpuding heolthcare, manketing and appertising, retail, finance, any edaction Benebits cacluele:
15. Heathcare: Fheed by digita and Sociat Curamer behaviors and the neet for lecure and acerrble efreton'c heath neersps (Etys), hrepitets, clinies, crop otheor
16. masketing and Atrartising in an cinpustry pepedist on Sresel metia, as aull as the quick creation and pubrieking Cr coutomer-belevart content, agencies are lying hyhrif cquag adoption Srapegier to detiver criticol ceient messagos to thair local any arong wide ourfiences.
17. Retrii: A Succertivy e-Commesce Stratignt Dequimes a sound chterant Strotegy: arith the hulp is clowd adoption, entersnet baud retail is able to eftectively mark if to ceutomers. and Saire therg porquet tofa forlen monuy.
18. Finarce: Etticient expenve management, haman resoarres anf Ceustomer Commanicofions. arre throe of the nory improtent borisies neets of troday's winance ongenizations. Foo these reasms, finanic of services institations are now plaing their e-nail platforms ant mantefayg
in the Clood. twis O in the Cloud.
19. Equeation: eitermet baect lequcation oppontontries are now neme popular then erser. The cloug alouss cenversities, privape instifutions, and S. 12 puseic seherls to provide feoming, honaiwork, ant graticy syxtems onlene
1.9 Cloop Compating Appeications
clows compating is appried in olmorst ant the wiels vike

- Buiners
- Enterpainment data stroage
Social neteroorking]
iducation
managomey
Some or the prpalar appeications or cloud Comprating ane
(1) Business Apprications: Cloove compatiog Comproety mere Cllabiratike and eary huriness antithe heap ir bitferent apps. Vike Mailchimp, Clotter, Gargle Apps l_{r} beginess an quickimes

MailChimp - - if prevites one ermail pareiching plafterm.

- cit is a simple emai menueting syefom
cif proviges a vanius optim. to deriso, Sent ang Save fomplat bor emaels
* Chater: This app haps to share cimpeotant chtormation abry orzanzation in reatione
 - on quagle D.Cs. if allows the busines ciers to share them in a combined cray.
$\frac{\text { Quigbuige }}{\text { Silations } \text { for businels. accouting }}$
- i't arsixts in moxitosing cash fow, cneatiy VAT returss and creotig hoinery report.
Q Dote Stroag anf Boyk Seatia Appeications
Bry.com if provides prog i prop Sentius for biles. 'it is nacemary fro the wers to prop the biles intr. Bog and accey Grom arythere
* $\frac{m^{0} z y}{\text { service it provider on line boel cy cy }}$ service for files to prevent data loss
* Jougua it is a aweb bere chfarbace, if haps to shows a Single wat of Contentys for files stroed in Gugle pocs, Boundny ant Daryboz
(3) Mongament Appeicotions:
* loggl : it haigs to traek time pesing olventy to a parficior pryeot
* Evernote if is periai designed to create, organize anf store ditherent pieses ot medfa. it Keeps all statt bue teny focement, phot, wedee or lven cuebpoge in the Cloup.
* oupright: it is an aecoanting app that hyps for traekchy income, expenses, procit and loues io neal time
(4) Ald Appeicotions

Mo0: if provides art Services like dangnig anf pronting husiness carps, port conts ond whi coergs.
(5) Bentertornment Appeications:

* Aver boy. frm it provides Streaning Seapice The messic files oor stomel corind ant play krom the clow using player or Servica.
(6) Sres Appricotions
* facebork: if provites Sreid meforary éry Serovices biles, Stotys ant mere.
* Twritter if hyps in chfencefing lorith thas any ongaizzation, celebrity os any person whac's on twitter anp can havel lapeif uptapas oregoesity them.

Excercise
$\frac{\text { Impertant Questions Chant }}{\text { What is Coud Computiog }}$
(3) Debine Grig Campating
(3) Dltine utility Comporing
(4) Debine Iaas.
(5) Define Paes
(\%) Define Saas
(7) What arre the applicetions are used by clouf Compuing
(8) Define Cloud Adiption.

Orpretant questions (SLong Questions)
(1) Descmbe Gboug the Histricat dendepment/ erolution or cloug compating
(2) Desuribe aboy the Charouterdics of Clood computing.
(3) Desciaine aboy the clrag Computing reference model.
(4) Deserothe aboy the cloup Computing entirermest
(5) Detresibe about the Cloap service sequirements.
(6) Explain about the Cloug and Dgramic entroaf rueture.
(7) Descrine abry the Cloup applications.
x The Fond x

Chapter-2 (Cloug Computing Architecture)
2.1 Ftrofuction

The clool compating architeoture compries of mang Cload Components lach or them 1008oly Coppled. are can brodly dinide the claop architetane into tur parps.
(1) Frontent
(3) Boek ind
(1) Front end:
nefers to the Client pary or Cloug computing system. it consixts or intertioes FOppeications that are required to weles the Cload platiform
exomple: Ches Browser.
(3) Boek and:
refers to clrup itselt. it comprises ot hage date sproge, Virteeo moehine, Security mehondsm, Serrices, peplymint models, Serrers lefe.

Components of Clood Compoting Arechitecturn
(1) Client Fnfrastructure:
it is a tront end Component (provides GUI to inferaef with cpaod)
(2) Appicication, it may be any Siltware or plattorm that a cliert crants to access.
(3) Services:
if manages that lukich type or seavies you access occorting to the client's requirement.
cloud computing others
Sars, pars, Jas.
(4) Reentime Cloud:
if provides "Execution \& runtime environment" to the hirtuof machines.
(5) Storage: one ot the most important components it provides a huge amount of Strsage Capacity in the cloud to store 中 manage date.
(6) chtoastruetume: cloud introstrueture includes hardorare $\&$ software components such as Servers, Storage, network devices of other resources needed for cloud comparing model.
(7) Monagoment: Manages Components (like application, servile, inkrastruetune)
(8) Secosify: inherit boekeng component provides Security meehonism in the back end.
(9) internet: Median through which fronted $中$ bookend interacts.
$2 \cdot 2$
Cliad reforence model
Some as 1.4
2.3 Tapes of clocels/Cruel Deptoymentmode
(1) Pabsic
cloud aprivale (3) clioul (1) cloud
(1) Pabsic Clouo
\rightarrow open to all to stroe P acess infermation $V i a$ infernct
\rightarrow pay as per lue (for the services)
\rightarrow Monaged by third parties (cloud Service proviter)
\rightarrow Fenpamental characternfics of pubeic cloug is MULTIITENANCY
lexample
EC2 (Amazom elastic Compute (poup), dropbizs, Gorgle drine

Adrantages
\rightarrow it is maintaind by Clood Servia provider, So twe need nof maentain if.
\rightarrow Location indepempent because its Rervices age derivered through the intromet.
\rightarrow hish scopobivity
exaingle grail others 15 GB . Whe can increase onytime i deerease ofs after choreasing
\rightarrow Cort ettreetine and pay aber per le.
Disadvantages
\rightarrow ber secure hecause nesources are shared pubeically.
\rightarrow les Cromizahle as Canparad to private Cloug.
cloug
\rightarrow Services accescible withich on organdizotion 1.e it beforgs to a specitic coranonaters
\rightarrow Sometimes affo called. chternof/ curporato (hap
\rightarrow Can be managad by organization, 3xd party de
 Can acley the oresrorres

Adrantegies
(i) Hish Secority: in pritate clooe Security Concerms ane hish Since Customers dafa pother sensitike inferomation dresnif flouroy of a pribate intraspreetane.
(ii) data privaly: only outhosized peaple can acers the pato
(iii) nove Custonizoble: as Companies get to costomize their solution as per requionement
(cv) improved melobielty

Dirs seprantages
\rightarrow private clood is aclessible Grithoin an onganization, So, the area of operations is linited.
\rightarrow Hish Cost \rightarrow lere neep to innert ion Hartware \& Soltware
\rightarrow limited Scopobility
(3) Hyonid cprod
\rightarrow beatances of pablic \& preirate cloud
\rightarrow Contico a aetrities pertanold by privote clang
\rightarrow nm. coitical actrities pertormat by pubsic choot
\rightarrow Apvantoges \rightarrow Scatchieity, security, low Corf (as Compry 'to privape cloup')
$\Rightarrow \quad$ l/enebility
O.sadvantages
\rightarrow Managing is difficulf compleng be caupe thare are haore than One type of deplogment model
\rightarrow degerepenuy on intrasprueture
(4) Commanily Cloud
\rightarrow alloms Sesrices to be aeresible by a groop of Sevasof orgonczations to share the ohformation betemen the ogganization \& a spreitic Commenity.
\rightarrow owned, managed \& separafiod hy one oormore organizations in the Commanity or 3 repparty.

Agtranteges
(i) Cas requetion/cost eftretine
\rightarrow it is Cheoper than private cloug (mattiple (mponies Share the bill, anhich. lowers the Cort.
(ii) Shoring Omng Componies (the resounces)
(ii) more seare than pabric cloup buy ley the privape cloup.

Discoplvatages:
(i) dafa is Celestrible between ogganizations Checare the qata its stored of the Bame location any dofa stoned these misht be cacersible by others)
(ii) Consistent maintenance caip
(iii) ovesal increase cuot than pubric Clay.
2.4 Clour onteropercabing af standots

Snteraperaboexity
\rightarrow The abisityy of turo ur more Sretems, appeications or components to exchenge and uk
informotion.
\rightarrow The obisity of Systems to provide and neseike Services from ather syotems ard to be the services so enterchangep to enable them to operate effectively together.
\rightarrow Interopesobicity is on enabler tor interchange abivity (rogluement of one element with Onother)
\rightarrow Inferasiving Interoperabisity is the gooy ar standargs but stareforps 'arn't guomfer interrperabieity.
2.5 cloud compateng Interoperabierity use cases
\rightarrow user of one cloup alerssing stroage én another cloud (to provite elartic strogege)
\rightarrow Applications and Services ranning on (and Commonicating between) heterrgenous Cloud Plafferms I
\rightarrow Appeicution using nesoarees (CPU, Stroage)
in onother hefraganous (foad plafferm (resource shasing)
\rightarrow Resoare shaning cerres ditterent time zones.
\rightarrow Demonsefoxtion of tiga portaicisty (acrass Service Provépers)
\rightarrow Whot is needed to fronefer a roming STATEFUL Sertice krom Cloug proviper A to B.

- Moving a file sharing service between cloud providers.
- moving a Sproaning Service betaven Cloup providers

26 Role of Standards in Clow computing enridonment
Ditheren storpards are used in Cloud compafing environoment
(1) Stanfarts for Appeication Developers
(2) Stanfarts bor maesaging
(3) Stantarts tor Secusity
(1) Startards Appeicotion Devetopers

- Brousers (Ajax)
- Data (XML, JSOM)
- Solution Stacks (LAMP and LAPB)

Browsers ($A \mathrm{ars}$)

- Amos is a technique, not programming language
- Cohen we cored gas in unebsite there els no need to retract page.
- Small cate

XML

- XML stantster Extensible Markup Langue.
- XML cara designed to stree \& transport data
- XML was derigned to be bath human-and machine readable.
JSOK
\rightarrow Javascript object potation is alisffucight data chtercharge format
\rightarrow 'it is easy for humans to reap any write.
\rightarrow it is eng for moekines to parse and generate.
Solution stacks (LAMP and LAPP)

$$
\begin{aligned}
& L \text { - Linux } \\
& \text { A - Apache } \\
& M \text { - My soL }
\end{aligned}
$$

P- PHP or Python.
\rightarrow LAMP is a popular open sure solution commonly used to ran dynamic Cuebsites. and servers.
(2) Stantoris for messegetor

- Sengle Mescaga Fraufer grapcol(StiTip)
- Pory office procel (pop)
- Dntirnat mevegitg Acces Protoca (Irtos)
- Single Object Accey protrcil (SuAp)

Semple Mersage Fransfer propoci (SM TP).
\rightarrow SMTP is the Standarp protecol tro email Services on TCP/IP neturor
\rightarrow SMIP provites the obisity to seng and receine email mersages.
parf ottice protace (pop)
\rightarrow POp is an application layer protocl in the OSI model that provides endapors the obieity to fetch and receive email
Fintronet Memoging Accen propicol. (IMAP)
\rightarrow IMAP is a Stardart protacol tor acrising email on remote on a pomote serper from a locop client

Schyle abject fecen proticol (SAAP)
Sapp is a Protocal sprictication for lechanging struetarey intormation in the implementation of Cueb Servicles is compoter nefaroons.
(3) Stangaods bons Security

- Securify firsertion Martup Larguage (SAML)
- open tathartication (OAttr)
- SSL/TLS

Security Arsertion Miratup Laguage (SANM)
\rightarrow SAML is a language protoci for hanfing authestication and autherization in a neforronk.
\rightarrow it is one of lasious XML based morkup languages avaiable to help arth asperts of lueb penelopmant anp we.
open futtentication (Ofuth)
Ofth is an open startary aufterization protion or franework thot pesercibes how anrlatod resturs $\&$ Seotices can Rekely allow artenticuta acess

SSUTLS
Secure Sockets Layers(siz) ond Toupport
lager Secarity (TLS) both Cryptograplic. propocos hed to increase Secusity hy encorpting Commenication over Computer neturarks.

Exercise
Emportant Questins (Sheot Questions)
(1). Dethe Clay computing Architecture
(2) What are the components are cured in chas computing frefiticeture.
(3) Defrine purbeic cirug
(4) Define Private croup.
(5) Define Hyboig Cloug
(b) Deftre Commenity cloud
(7) What do you neagy by clual groteropoasinf
(8) Defin SMTP, Pop, IMAP, Solp SAML, SSLJLS.

Dimportap questions (Lorg questions)
(1) Descrike abory the grout retioence maty.
(2) Explain about the types of Clougs.
(3) Desinibe ubocy the Cloug Interoperabisity and Stanfarps of luse cases.
(4) Explain about the gole of Stantarats in cloun computing environment.
3.0 (Scofobieity $\frac{\text { Chapter-3 }}{\text { and Fault Tolerance })}$
3.1 Introquction $/ 3.2$ Scalobitity and Foult Tolerance

Cloug Scolobirity is the abirity to seate on demang the focieities and services as anf When they are required by urer.
Tenmg Reratod to Scalabcesty
(1) SCALE-UP - Frereasing/ Atping resourees in lxisting server
(2) SCALE-DOWN - Taking out resources that are afded an exitsfing server.
(3) SCAlE OUT - Adtidy New/extra serhers in the Custer.
(A SCALEIH - Toking ous Adted Servers Rrom Cluster

Aprantages or Scarminty
(1) Mare starage
(2) More power
(3) More hersabicity
(4) Les time to create
(5) Cort Sarings.
cloud Foult Tolerance is toleroting the bausts by the clous that are pone by mistace by the user.
\rightarrow Faust tolesance refers to the abrity or a system (computer, netarark, Cloud c|ustes, efc) to (ontince operating aithout interraption when one or mare of eits Components tail.
Metries bors faut Tifersence in Cloud compering
\Rightarrow The existing toult toleschce teennique in Clout computing Consifers Vasiocs. parameters

- throughjut
- rerponse-fime
- Scalabieity
- Pertarmance
- arailabirity
- Urabibity
- Delabicity
- Security ard associateg aherheod

Types of Fault tolescence
(1) Reaetive foutt tiperance:
it techniques are used to reduce the impoet of tailares on a system crken the faipures have vefually ocured. Techiques bared on this policy age Chekpoint / vestart ard retory and soon.

- Cheek poinfing/restarp- The faileg task is restertep trom the wecent Checkpoint rather thon from the beginning. if ils an ettrecient techinque lor lasge agpeication.

Reprication - inurter to make the execufion succerd, various repeicas of task are ruen on ditterent resources Centill the lukile repeicated task els nof Crashed; Hadorp and AmezonEciz are cuep for inplementing reprication. dob Migration: on the oclurrence of bailure, the job is migrateof to a new makhe HAprovy can be wrep for migrating dob to ofter machines.

- Fepry This task level tecknique is simplest among all. The leser resubaits the task on the some cloug mesuarie
- Task Fesumension: The foipe tark ds Sobmittol again either to the sane moekine on which if aras operating or to Some other Machine.
(2) Proactive Foult Tolerance.
prooetine foult tolerance preticts the kautts proaefinely arrpreplace The suspectad componentes by other uroffing Comporvents thus araiding reconent from lauts \mathcal{L} errors.
- Sirturare Renea - the Syxtem is planned bro periousic reboots cend enery time the syitem Starts writh a nee Stote
- Selk-heoting - failure or an constance or on appeication goaning on muftiple vistuap machines es confrolled cufomaticaly.
- preemptive Migration - en this. Technique an apprication cb constanty abservep \& concyzed. preemptine migration of a task depends upon beed-back-Iorp confrol mechorism.
3.4 cloog Solutions
\rightarrow A cload band solution velers to applecations, starage, on-temand Sertices, compater neturork or other. resogres that are acceites with On inferinet Connuefion throush Onother pooriders shaned cloug Compufing kromeciork.
\rightarrow The simplexp ar of to think of Croud Compating is by compasing it to epectricity. goar home ard businx is have it but gou doon't need a pours plant an your propesty to wee it. you juss connec, to the one that prevites epeefricity to your area.
3.5 cloud ecosyxtem
\rightarrow Cloug eoosjsiem is a term uset to deseribe the Complex. Syrtem of intertependent Components that work trgether to enasle cloud services.
How cload ecosystam wark S?

\rightarrow The conter of cloup elosyitem is pureic cloup Service provifer. it might be an Iaas provider swh as Amazon wreb Services (AWS) ar a Saas henfur buch as Safestorce.
\rightarrow AWS is the Center of its ecosystom, but it is afsua paot of the Salesforece elosystem. Sapestorce russa number of its servies on AWS's intsasforeune
\rightarrow Alus is afsion a part of the google elerfitem. google runs a number or its Searices on $A \omega S / S$ intoappuctive.

Benebits of a cloud ecosystem
\rightarrow Companies Can use a cland elosystem to beild hew business modets. if becomes relatinely easy for meqical perice Manafelurer
Fir Example
to Lounch a heort-monitoring Service onits cloup servece previder's cloup entrasfoceture and then sell the Service of ongside its main business of monifacturing heart monitors for Hopitals.
\rightarrow in clrop ecosyitem, it is afs easies to aggregate tata and analyze how each parat or the system alfects the other parts

Fir example
It cen elosystem Consists of patient records. Smart perice logs and heath core provider recorts, it becomes possible to analyze pafferns across an entire patient populations.
3.5 cloud Business Process Managumat
\rightarrow Business process Management (BPM) is a mature business discipline that has Spurned a number of technologies to Suppiaft it.
\rightarrow Tull cf is the agile Who survive those argainafions who are able to adapt to Change, to innovate as cerell as continuously improve, and t continouly monitor p analyze the results of these adaptations
\rightarrow ch the current $\mathrm{Creb} \ln \mathrm{B} b \mid \mathrm{d}$ business environment process a many cares depend on the eisconerg and gelegnition of components that exist as web searices
\rightarrow The current trend is towards emphasis on mobicipy and collaboration as essention elements to support the agility and Currency ot business processes.
\rightarrow This means that BPM hendors are enconeasingly Seeking to ougrrent their BPM packages by incorpucratiog 马oroots. Web 20 type Konctimality.
\rightarrow Cloud based BPM is one response fo these new demands.
\Rightarrow BPM governs organizations cross bonctional, Customer focused end to end Core business process.
BPDM Like cycle

The BPM likecycle is on iterative process ch which all ic the BPM aspects are covered.

(1) Design:

The design phase consists of identifying existing process and Capturing the business processes in process models.
(2) Implementotion
in the inplemestation phose, the designeof process is implementot in an execuoble proces language, which can be dreployed en a BPMS.
(3) Encertment

The inactment Phare is the rentime phose of the likecycle. The busines proces is peploged and monitored by a BPMS.
(4) Evaluation
in the evaluation phase the monitoned information that its collectag by the BPMS is cused to veries the business proces. The Condasions
drawn in the erquation phare are chput for the neret iferation of the lisecyele.
3. 7 Poxtabicity and inferoperabigity Sloud portobieity
\rightarrow Cload partabisity is the abicity to morne appeications and data brom one cloug computing envisonment to another crith minimal pissaytion
\rightarrow Clout partsieity enobles the migration of cloup serveces from ane cloug profiter to onther or between pubsec cloup and a private cloud.
\rightarrow Tha types of cloud portonicity
(1) Dataportabicity (2) Apprication portabicity
(1) Data postabirity

Defa portabieity means the abirity to mone foto (Files, documents, dutabare toblesere) from ane cloup system to another and have that dota lesaple in the other syrfem.

Doto

A
The arrous show examples of cloug dafa portonieity
A - clood Service Syxtem to $/ 5 \mathrm{rm}$ clow service
$B-$ clood service tol from cloud servile
(2) Applicaion protusieity

Apprication protobieity means the abirity to more exe cutable sortarame trom one cloup system to onother, and be able to ran it correctily in the pertination System

Appeicotion

Dafa

The arrocos show examples of cloup apprication portabirity
A - Cloud service syrtem to / 6rom cloud Service
B - Cloug Serrice to/ brom cloup service.

游 (lood Interoperability rekers to the 2.4
3.5Clead Seorece Maragenent

Servica Henasment

1. A systam integral of Supply Chain managacothat Contantes actual Compary Soles and the Certomer.
2. The goal or Service management is to maximize Serrice SupplyChains.
3. The parpose of serveice management are to reque hish corit by कotegrating protuctes ond services.
Cloud Serrice management
4. Cloud monitosing and clad service managenest trols allow cloug providers to ensure optimal pertormance, continuity ard efficioncy in tistacieng, on pemant environments.
5. The derinery of dynamic, cloup-baved chtranfruefure, plapform and appeication services poesn't ocur in a vacuam.
6. in additim to best praefices tor effeefine adminispration of all the epements als.ciated with cloup service delinery, cloup service managenent and cpoof monitiong trols enab/e providers to feup up with the centinually Shitting Capacity domanis of a highly elartic enticonment.

7. The above figure illasprates that Service managment provides the risibieity, Cantre) and abomation needed for efficient cloud delivery in both pubsic and privafe gmplementation.

Simpeity user inferaction with it

1. The weer briandly self service acleperates time to value
2. Service Catalouge enastes Standarts which drives Consistent Service. devitung.
Enable poricies to lewer cort Centh provisioning
3. Aromatic allocating and de-allocating of resuasces will make derivery of Services tast.
4. Provisioning poricies allow noleare onf reluse of aspets.
Increare System admen proquetivity
5. Proriting the benalits to the brofer will probably become a crifical Sueress taetor in clous compating.
6. Due to the grouth of Service broferage basiness will cacreare the abieity of cloud Consamers to use Services in a frustararthy manner.
7. There cloud mediators Ceil help Companies to choose the right platform, deploy the apps across multiple clouds.
8. 8 Cloud oltrexing
patterns of this Category caver potterent functionality bound in clouds regarding the senctionality they provide to customers and the behation they display
(1) Cloud Environments
paftions of this Category describe the hosting environments of cloud in tetacil and refer to other offerings composed to form these environments.
(2) processing offerings

Computation facility by the cloud.
(3) Stage offerings

Storage facility by the clout.
(4) Communication offerings
data exchange facility between mare than
user by the cloud. one user by the cloud.
(5) Secasity offerings

Copy or pur tora on various services sy or pur doya on safe on the
es I kaips dota is safe
other.
3.9. Testing cunder control
\rightarrow Cloag Terfing becomes Abiquifous Cuherein Fesrarces such as the sobterame, hardurane exe, are cheokst in a thorough tersing? effort.
\rightarrow Dwe to Clofain Challeges like:
(1) Hish Carts
(2) Rerfrictive budger
(3) fomerous test cases
(4) Various liers acrons the glibeefe.
\rightarrow Clouf ferting typicaly involus monitaring andpeporting on reap-arroly leser traffic confitions as crellas
Loof bafance and stress testing for a range of Semul ated usage Conditions.
\rightarrow Main acm it the croop testing is Consuners Can access the IT resourles in the test entironment.
\rightarrow Itherfine pesting becomes essential Whereen arailabirity of Eifreible and Scofable cheranfruefure, diffributed texp environment or conlinitad' stroage helps in goving time as cerell as the cost.

Fenefians tectiong
To hesity the basic fecutionalities with rexpect to raceis input that should motch the expeeted cuppat suen as wese logeh, Shutfown or Syitem, ete.

Loop tesfing
To ensure Stesieity with anumber of users aclessing the cloug with Scaling-i or Sceling-out, loop testing is confueten to hanfle variable looed.
performanci and Benchrary terteng
To esfobrich Certain Yardricks Considering the pertormance of the appsication Guch ar Consestency aeroys derices.
Neturra Securify testing
Tepting in ferms of retarrok connectivity maintenance of data citegrity, protoul ife becomes imperaifine to ensure a Selere environment.

Fresopesobieily and compatibility Texting
\rightarrow TO test seances suctionatity cecrops browsers and $p /$ offers.
\rightarrow This pest is to Cheek the System with harrows operating system environment. This Can be done using clout tenting Services.
Stree Testing
This king of text is to ensure the degree of endurance or the System. That is, to What extent the system is able to per form Confer excessive pressure, Simultors are used to create peak load situations tor Condoefing stress test.

Browser performance Testing
Different browser platforms are lied to Check the compatibility of the application with the browser.
Latency Testing
if is the measurement of latency (speed) between the action and the Corresponding response after deployment of the system on the cloud.
3. 10 Cloud Servica Centrols
\rightarrow Crad Service Controls improves your abieity to mitigate the risk of qata exbilteration trom cloup servias Guch as Clout storoge and Bigquerry
\rightarrow With cloup Service controls, you Can create perimeters that proteet the resoupees ond dota or Services that you eppricilly sperity.
3.1) Rirtay Desktop Intrastructure (VOI)
\rightarrow VDI is a peennelogy used to creape
a Virtuofized derktop environment on a romote server sofecp.
\rightarrow in simgle terms by using VOI you con accers your ristral derktops remotely.
\rightarrow What are the bosic components of VOI
(1) Virtulization
(3) Hypertisor
(3) Connection Brofer
(4) Derktep pools
(5) Apprication Vistwerization
(1) Virtactization
ristaolization is the creation of a histuag rersion of a desktop, OS, Server, or storage
-Tradifinaf precitectare

Apprications
operating Syrtem

Hastwame

Vistuof Architeoture
APP APP APP APP 05050505
ristualization Layer

Hasfurane.
(2) Hyperrisor

Hyperrisur is a Sotterare that Separafes. the opesating System from the cenferlying harturare by creating a restacized entigonment.
(3) Connection Broker

A Connection broker is a Sobtwore program that oflows the end-urer to: Connept to remote rispuap derktop.

(4) Derktop pouls

A Derktor pool is a grooy of histuop derktors arith an codentica Configasation Such as OS, Storage, ant appeications.

Any Change on

$$
\begin{array}{ll}
\text { hy change on }
\end{array} \longrightarrow \begin{gathered}
\text { Translates } \\
\text { to Disktop pool }
\end{gathered} \quad \dot{k} \dot{N} j
$$

(5) Ajpeication histercization

Ajprication rinfucization is the teehnology used to create a rontuacized apprication inage onf replicate if to all the virteen druktres in a derktop pol.

$$
\binom{w \text { rof, } e \text { ow, }}{\text { prur pory }}
$$

1. pacpaging $2 \begin{gathered}\text { Antaluing } \\ \text { apprieations }\end{gathered} 3$. Mirroing
\rightarrow 4. Appeiction rirtualization
How VDI wonks
Abter knowing all the Components, lets see hoo VDI cuorys.
2. User Sends login nequett to their ent point device.
3. Connextion brofer aecepts the requat.
4. Now the wer can use deexktop vecorfing to their process.

Cuhat are the benebts of VDI
(1) Aeley Anguhere
(2) Eary Baek'y
(3) Bring your own derice
(4) High lenel Selarity
(5) Corf requetion.

Exirche
Tinportent Questions (Sherf Quertions)
(1) Whof po you mean by cfrop Scatabirify?
(2) Defind clayd baept trlesence.
(3) Cusat are the matrics csed bor taest tolerance in clrat Compating?
(4) Pebtine equof solutions:
(5) Define cloug ecosyztem.
(b) what is ifrod pontabieity?
(7) pefine cloof grteroperabicity.
(8) Delane cloup Testing.
(9) What is Strees Terfing?
(10) Debine Fanctionap Testing.
(11) Detine Cloug Service Controls
(12) Debine VOI.
(13) What is Hypervisor.
(14) Detine Varfualization.
(15) Define Connection Broker.

Smportant Quections (Long Queptions)
(1) Explain abouf cloag Fault Toleronce uith istspe.
(2) How cloap elosyitem cerrosk?
(3) Deseribe about the Cloog Busines procers Management
(4) Explain aboy the clrod pontabivity ond its type.
(5) Deresibe ubout the Cloud Sertice Management
(6) What are olresing by the cloup?
(7) Explach abrot the cloug Terfing and cits type.
(8) Describe abrut the VDI and How VDI cerorks.

Chapter - 4
Cloup Monagement and Virfuacisution Teechology
4.1 Create Vintualised Arehiputure
\rightarrow vintadization is a teekrique, which allouss to share a Bingle physicy instarce (Server) of a resource O_{r} an apprication amang rultiple Cortomers and "ogatrizations.
\rightarrow it pres by assigning a vgicof name to a physicap stroage and proveting a pointer to that Physical resousees culen demanded.

Hypervisor (Kinsuof Moekin Monitor) creation of a Vistar Mrekine (VM) over exehting operafing Syetem and hartavare known as hardwaree Vintuacization

A rintual Moekine provides on entironment that es lrsicaly Separated from the cenderlying harduare.
\rightarrow The Mochine on cukich the Virtuat Machine is going to coneate es Known as Ho if Morkine and that hirteap machine is geterned as a Gulest Maehine.
Types of rintucelization

1. Hardurace Vimpolization
2. operating Sgetem histaolization
3. Server rirtuopization
4. Storage Virturization.
5. Harduare hisfuacization
\rightarrow Hyper visur (hispaof Mochine Mgonager) is dimatty insfallet on the haspuare Syxtem is Known as hardarare Vistarization.
\rightarrow The maen 1 ob of hyperteisir is to control and manitoring the proayor, memory, and other hastarame ressures.
\rightarrow Abter Visfarization of hardorare System ure can chital disterent operating syrfem on et and ron ditherent apprictions on there OS
usage
Handarane histualization is meinly done lor the Serter plaftorms, because Caprolling hirfuap Machines is much larier than confrolling a physical Serner.
6. Operafing Syetem ristureization
\rightarrow ahen the hirtaed Moehine Manager (VMM) is instalted on the hoit operating syspem instray of fimeetty on the harfarare Systom is known as operating Syttem Vistacization.
lyage
operafing System. histureization is mainly used bor testing the applications on ditterent Plaftorms of OS.
7. Server Vistacization
\rightarrow When the Virtaof Aporkine Monager is fincetty installed on the Serner Syxem ès known as seaherhirtabization
csuge
server virtureization is qone because a single physicap server Con be divided into Maltiple Serturs on the demand bests and for bapancing the loop.
8. Storage Vértualezation

Storage virtueization is the proces of grouging the physica storage krom multiple neturory staroge deviess Bo that if 100 Ks like a bingle starage terice.
usofe
Storge virtamization is mainly done for baefuy and reconery purposes.
4.2 Data cenfer
\rightarrow A Data (inter is a tacility on some. 1ucefion where mattiple serhers/merehines are engaged in cillection, staring, procersing and firtribution of massine omront of fota
\rightarrow Dofo Centers hose a refurrk's m'ry crifical Syutems and hitof to the Contenwity of paily operations
\rightarrow The secarity and reliabirity of dota centers ond their intormation is a top priorify for argarizations.
Why cureneed of Data Centers
\rightarrow tro stroing massive omount of dota
\rightarrow for proveging the 24×7 services to the Curtomirs.
\rightarrow bor data Sobety and Securily
\rightarrow bor Confueting doy to day bosiners operations.
\rightarrow Girgle and tocebrik are inhesting
$\$ 700$ milcion.
Components of Data Center
A data center consiuts of
\rightarrow A banch or Serners Connectet throush nefurre to ran (ompley apprications.
\rightarrow A Coving System to manage the heat nelased by mactines.
\Leftrightarrow proper rentilation Syrtems to enpage Optinal air-5/0w.
\rightarrow Screpinizet Secusity Systams to prewent cenoughorized aley to pata alroes Cenfers.
\rightarrow power dortribution \& Bacfop units (gensets, bafteries, ete) for smwoth execution losing power Supply cenits.
\rightarrow Kedantart Requadant Unins/Buegus Syrtems to ensure meximum ceptime .

Types or Data Centers

- Internat Data Centers (IDEs)
- Cloud Data Centers (CDC)
- Dark Data centers ($D D C_{s}$)
4.3 Resiliency
\rightarrow Resiliency is the ability to handle failures gracefully and recover the whole system. This is a huge challenge for services and applications where the Components compete tar resources and depend on other internat or external Components/ Services that tail, or may rely on defective sifterare
\rightarrow cloud resiliency is the (opacity to rapidly) adopt and respond to rips, as awl as oppertanities, in simple currants resiliency refers to improve our business $50 r$ handle risks.
\rightarrow This ass maintains the continuous business operations that support growth.

Resiviency Copabiesties : The strapegy
Combines muftiple parts to mitigate nits and Fimprone besches resilience.

1. Grom a bacilities perspective, Che nay cirdst to implement power profection.
2. Grom a Secirily perspeetive, to protect our data and appeications tre may crant to implement remotue boepup, identily management email tiltering or email archiving
3. krom a procens perspectine, we may implement cidentification and ofocementation of mory crificy business
Proceses.
4. Iram a arganizational perspectich, che moy crant to cimploment α hirfup urofetation entironment.
5. From strategy \& Vision perspectine, cure may cuant to look of the king ot crisis management process.
+4 Agiling
\rightarrow in a clood Computing catert, agility otten refors to the abieity ropidly deralop, tert and launch applications that prine besiness growth in a constantly Changing IT enticoonment
\rightarrow Cload teennlugy otters basiness a foy mears of promoting agirity, and is a hity tro in the enterprise pash toward better adaptobileity.
Adrantages of agirity
(1) Gracter Businus Continaity and Atwibierity: cloug services con be rilled ap or from arper basiness requirements withoust increasing the poul of IT equipment that Company mout purchare and domage.
(2) Infrasprueture Agivity:

Clow oflows Componies to Signiticantly decrease the time it takes to provision and pe parision
(3) Atyemated aflrcation of resource.s

Cproy Compating peries on birtributing curorglays anel sharing of nessarus to acheine coherence onf economic of scope.
(4) up-tr-dufe techallogy upgrades.

The refrech cyeles for on cepgrate Can be ling as there are plenty depenponcies that need to be planneed out intrasfrecture, operations, and girterage.
4.5 Cisce Data Centers Neturork Archipecture A compreskibe Archifecture that enables IT exelofine to
\rightarrow Consreipate onal Virtualize Compatiy, Storage and refarark nesconces.
7 Delined Bravere and aptimize of anpligee, pasther and Custaner alless to inkormation and apprications.
\rightarrow protect and rapidly reconer IT resoonces ond applications.

Bailt with
Neterork Fitroatrueture: Gigobit/L'Gigobit, Grkiniband ary stirage suritching and optica framport.
Fiferbetike sertices: Sprage Fobsic Serrias, Computer Serrices, Secorsity servias ant apprication optimization servicas Monagement : Febric Monoger Celemant anf uetaronk managernex anf (ises Vrome (Server \& Servia provisioning)
\rightarrow CISCO Data Center x Iftaronk Architecture in Suyprort or SOXA C Service-oriented

Benelsits
\rightarrow Low priced Server and Storage inkrasprupure.
\rightarrow Trerrased business agility and adaptobicity
\rightarrow Abicity to meet regutatory Compliace sfangtorts lerith entograter nefurork Secarsity ang souprort for hasiness Confinuerce.
\rightarrow Textep and herified design and expensive Service offeriags kor Lruer Gimplementation Corts 中 requeef risk.
\rightarrow Invertmient protacion bry Cone data Center platforms olfering natiyour depligment likecyeles.
\rightarrow Rapid. application devalogment and time to market of beriness critical Services.
4.6 Clow storage
\Rightarrow it is a service model in which qay a is trassmitted and strexed on semete storage system cubere if is maintainet, managed, back up and made araijable to the luers over internet.
\rightarrow Cload storage is based on tirfarized chtsappruture crith aceusib/e infirbaces.
\rightarrow Crith the hap of RESTKY APIs wero can refriene and alles gafa krom itosage. Athontages
\rightarrow pay for what is ured.
\rightarrow utigity billing

$$
\rightarrow \text { Globof avaibirity }
$$

\rightarrow Ease of ure
\rightarrow Recovery, Secority \& Gecersibicity
Disadrentages
\rightarrow Raek-ups may be slower dryenss apoon the internt
\rightarrow Hisher internet utisization
\rightarrow privaly concerns.
4.7 Cload Provisioning
\rightarrow The clous provisioning is the allocation of cloud proviter's resuonces to a Centomer"
\rightarrow when a cloug proviter alcepts a requet brom a Costomer, it must create the apprepriate number of Virtay Y ohines $\left(1 M_{B}\right)$ cenf alfcaf gesources to kupport them. The proeers is Condactey in Sevesp dittereng clocys
(1) advance previsioning
(3) Gonanic provisiming
(3) Lesrself provisioning

The form provisioning Simply means "to provide".
\rightarrow Coued provisioning prinasily defines how, what and waten on organization aril pritision Cfrap Services. These servias con be private/Infinnt, pobric or hybrid eloup proputs \& Solutions.
\rightarrow Clout providers detiver cpoog lilutions Throush on-temont, pay-as-you-go Syetems as serrice to curtomess and enfusers. Cloud provider curtomers acley Clad restorces through.
\rightarrow Trfarmet and programmafic aeley and are only billed for resrurces ond services used celcording to a subseribed billing metho of.
\rightarrow Depending the businsy model, a cloud provider may proride rasious Solutions, sweh A.
Intrartrueture as a Sertice (Iaas): may inclade hirtua Servers, Virfual Strage and histar perftops / Computers.
Sottarare as a Serrice (Saas): Decinery of Beimple to compley Sokterage through the internet
Ploftrom as a Sertice (paas): A combiacion or Iaas and Saas perinerred as C chibier Serrice.

Types of provisioning
(1) Adrance provisioning
(2) Dynanic provisioning
(3) Userselt provisioning
(1) Agranced/port sapes provisioning:

The Customer is provided arith the resource upon Contract/Service Sign up.
(2) Dynaric/on Demand provisioning;

(3) User-selk prevesioneng.

The ceser/cuifomer adts a cound Serrice or derice themselhes
(3) Dynamic/on - Demand provisioning

The Cutfomar or srequerting appeication is provited with resuarces on rantime.
4.8 Cload Asset Management (CAM)
\rightarrow in this aeforily the asseps. "n the propenty ukich is invilued in provitiag the m enoge of.
here priperty mods
(1) Sutfurome
(3) Hartarme
(3) Certoneo
(4) poriciles
(5) migration
(6) Crap apoption
(y) Arail obicity.
\rightarrow They are gatting managed in swhacrayy so that their lafwe wiv got maxinized.

$\rightarrow C A N$ is primmily abluy managery the Challenges of cloaf appeicafions, platborms ang कntroatpuetare (Saas, pass, Taos). kor gritance;

1. Chabieity to truek and manage the grouing luert Saas applications and providers.
2. Lank of a conpraciped hiew of croad resources on consamption.
3. Limifer ocery to Saas Subserriptiondata
4. Limitag accen to aefur Saas, Iaas, and Pars lusage data.
Benëfits ox Cloat Asset tyanagement (AMI)
5. Aclurofe tracking of key applications decinerep in cloud.
6. overcame the lemitations of cloud protots by proviting access to a Pringle centrolizes Vien.
7. Bixpanpt accers tr pota ang cmpreve of andysis and neporting
8. Accorote, complete riew of invespments ang there cyage aeroms the whole IT estete enables better corf control.
4.9 MopRedace
\Rightarrow Moprequce is a Sifterare kramelerrok ang jorgramming molel used tor processing hage omochts of doto
\rightarrow Mogrequee progran worf intao phases. nomely Mas ard pequce. May tasks derl with splitting ong mappity or tata whive Requee tanks Shattle dny requce the doto
\rightarrow The whele proccens goer throush Foor phaves or expection ramy
(1) Splitting
(3) Mapping
(3) Shuttling
(4) Requecing.

Conieqter you have fillowing inply dato for your MapRequer in Big date. program
Craicome to Haoloup class Hoporp is gorof Hatrop is bad.

Onpy Speits
An input to MagReque in bris Dote Job is divided intr fined-size pieles Colled ciput Speits: chpat Speit is a chunk of the inpory that is consumed by a single map.
Mapping
This is the heirg Firrit Phave in the exeation of Map-requee program. in this phare data in each spret is pased to amappizy to porquce onfpor ratues.
Shoffeing
The phase consames the ouppof or mapping phase ans takk is to consoriqate the relevint recorrs trom mapping
phase oupput, in aur example, the same cerrols are clabed togesther afing with their sexpectine borequeng.
Requing
ca this phan, outpic rafues from the shatbling phase ane aggoegoted. This, phase combines rafues from Shuftling phax and refarss a single oup puy rafue. in short, this phase Summarizes the complete quaset. in our example, this phave aggregakes the lafues trom shafteing phase. le ciccuates toty occurences of each currd
tic Cloced GoVersanco
\Rightarrow Cloup goveronce is a generaf fermbor oppljing Spocific policies or premeiples to use or Clout Computing Sertices.
\rightarrow in other terms cue Con Bay thay Cloy gonerance aepers to the pecision making procoses, criferia an paricies introlhep in ploneag, orchifertune, cecquisition, deptoyment, operafion Orp managomeny of a carop Computing Capobisity.
\leftrightarrow The goat it cloud gonerance is to Secure appeications and tata when They are located remotaly.
There are live reasons of Cloud gomerance
(1) Enable "baciness of "Cloup spereq" and erfabeish a Cloup ferria Centric XT opresatiag model hased on the speed, agirity and cup if cfap compopitg.
(2) Fiable appriprifte clrap dreision making arfhouf foriction.
(3) Integropeg arith ecilting entirprise IT goheronce procemes, poticies, boarts and trils.
(4) Bofancep appropriste Coverage bor Key decisions., chestments ang sirks while achiering the benifits or clouts.
(5) provefine to anficipate and prevenf Shafor cfrofs ary on outhrized cfrod acfinifiles that exprese óganizational virks.
The giverone c) applied ch clrap for
(1) Setting Compang poricies in Cloop Computing
(2) Reik based decision which Clood provider, it ang, to engage.
(3) Ausisning merponsbicifiles for enforcing and monitoning of the poricy Congeronct.
(4) Set Cernectine action bornon conpliance.
4.11 Load balancieg
\rightarrow Cloof looy batanceity is dolined ar the methog of splitting Curoklooids and compofing pripeoties. in a cload computing.
\rightarrow it enables enperprise to manage workloog drmands or agplication drmands by dirtributing resourus amang nomerous Computers, nefuraks or servers.
\rightarrow Clowel food batancing in quepes holting the circlulation of ceronkloof trattic ant pemanels that exist over the infermey

Loog Brancers
\rightarrow Loap Botancers allocates the Crorklog ond bofances it betcueen two or mone cloug Serners.
\rightarrow We can so outline our infrasfrueture to permit it to meet oufivity spikes, optimize the allocation of nesources ond guamter a mininal response time.
\rightarrow using a loaf bopancer is recommended in al coses, whether cre require one or mare or the fillowing

- Guamtee Sernice Continvity
- Hande hish tratsic.
- Be prraparael for sudfen requerf Spikes.
Loaf Bofoneers objeptime
\rightarrow Maintain Syptem fironness
\rightarrow Ompreve System pertormance
\rightarrow protect againf syston faikues.

Hesh traerabigen

1. in semple corrds Che Can Soy that hish araiabieity gefirs to the arciabieity of resousers in a compater syatem.
2. in terms of cloud compating it refers to the avaiabicity of Cloud services.
3. High araiabisity is the heart of the cloud.
4. it provitos the idea of anjluhere, any time acless to service of Cloue enveronment.
5. Arailabisity is afso neratod to qeliabieity
6. Arailabieity is a techrolegy issue as and as businem is ue.
7. Hish Availabieity can be seingly defiowed by the bionple equation

$$
H A=\frac{M T B F}{M T B F * M T T R}
$$

cuhro
MTBF - Mean Time Between Faipnes
MTTR - Mean Tine TO Repair HA Hish Avaipabisity.
8. There is two wdy improve the atraiabieity
(a) Gavere $M T B F$ to herylarge rakes.
(b) Pequace MTTR to hery low volues.

To mainfach Hish Arailabieity using Four things
(1) make neady bor server failse
(2) Make ready bor zone baclure
(3) make ready bor cpoed boulure
(4) Automate and Fert eneything.
4.13 Disaster Reconery

1. A disaiter recovery is the procens by which an organization can reconer ond aecers their Sobterare, lata and harforane.
2. it is neleury bor baster disaters reconery to have an introstruenerre Supporting hish avaipabieity.
3. The baipure of tiscufer reconery plan mainly que to lous of hish arailabivity praparation, planning, and Mointenarce to occurrance of the disarter.

Chapter-5
virtuolesation
5.1. Vixtulisation

Vefers to the 4.1
5.2 Netcornt Vintwelisation
\rightarrow Nefurark Visfacietation is the process of Combining harfuare onf Soltarare nefarork resources anf neterany tenationtion into a bingle.
\rightarrow Hefurnk Virtweessation is a procen of logicolly grooping Physicas neturnks ant naking them operate as Single or maltiple indepenfent neteronks Called rintuat Neterorks.
\rightarrow in cose Virtuof notarork each apgriation Rees ifs own logical netexurk, indpentent of physical network.
\rightarrow Xeturns Vistaliqation is a Abstroufion of the ghysicol neturork.

- Support tur multiple logicot reterorks rumning on a Common Shared physi af Scosstrate
- A confaner of network Services.

Nefewrer tértuolisation Architectare

\qquad Aletank $\$$ Secossity reitarizotin

Advantages
\rightarrow more profuctive IT environments (lie effecient Scoting)
\rightarrow improved Security and recorory fimes.
\rightarrow Faster in apprication desinery.
\rightarrow more efficient networks.
\rightarrow Requeed overail corts.
Desodrentoges
\rightarrow increased Coptiont Corts (inhisting in hirpaeizaim Soltarare).
\Rightarrow Meed to license Solturare
\rightarrow There may be learning curre it IT manafers are not 2eperiented..

S3 Derktop and Appoication Virtudisation
\rightarrow Derktop risfacisation allous the heris os to he gremotely stared on a sesver in the dota centeer
\rightarrow it aplows the wer to accey their, derktop hintually, 6 rm any location by dilterent machine.

They Can I Conch applications, open bikes, resize ceridours, edit documents and mare.

5.4 Desktop as a service (Das)
\rightarrow Dergtop - as - a Service or Simply Daas, Secaraly deeivers hirtay apps and terfteps srom the cloud to any derice or location.
\rightarrow The Destop Virtarlisation Solution provisions Secure siaas and legaey applications as wall as ball-winfows - based rirtand deskteps and priceres them to grar cerorktare.
\rightarrow Daas atters a bimple aref prepictuble poy-as a go Subseription moly, making it eary to scate up or fown on-demand.
\rightarrow Deriftop as a Service is also known as a virtuat draktop or horted derktop services.
-T Paas is a cload Computing obtring curere a Service proviper deeivers hisfan derftops to end wers over the interret, licenseg wath a per-teer Subseription.

A frentoges
\rightarrow Faster deployment and pecommisioning of aetive end vers.
\rightarrow fequeed downtime for IT supprap
\rightarrow Cout Sarings
\rightarrow Frerearef device flemibirity
\rightarrow Enchant Enhanced Security

$$
\rightarrow \quad \text { Releiabe'rity }
$$

\rightarrow Cencenterrapted Conneceivity
\rightarrow Discatter necovery.
S.5 bocat Desktop Virtuelisotion
\rightarrow Lucat perftop ristacisation means the operoting System ruens on a client device Using hasturare ristuolation, and all processing and cerostlaods occor on lecaf hastware.
\rightarrow Thas type of deerktor histacisotion Cororks arell when cesers po not neep a Contincuous neturork Connection and Can neet application Computing requisements with 10 Cl Syetem resources, whr wer wer St Virtteofisation Benctios VMI Viphe TM3
\rightarrow economico
\rightarrow Flexible operafions
\Rightarrow Security
\rightarrow Eriminotes the risk or Syotem failare
\rightarrow Flexible tromiter dape
\rightarrow Better resome ufirisation
\rightarrow Remote aecess
\rightarrow pay per luse it the IT interastruefure en femand.
\rightarrow enables roming maptipte os.
\rightarrow Ir any birfuel machine is not working or having any problem, others will not be affeeted,
5.- Server Virfucisation
\rightarrow it is the partitioning of physical serter into Severap riation Serners it is used to maximize the Serpher desources.

Physicico haraturare
urage ot Server virtubisation
\rightarrow The server ristuatisation technologyes mainly used in chebiserters by asing ristac chebservers, it proviges low-coxt wes horting Serrices
\rightarrow Inrfeat it having separafe compuper for each lub server, ine can have number of virtuap servers on the same Computer.
Server herfuelisation is used:
\rightarrow to make more efticient we of Server resources.
\rightarrow to improve the serveravaiabicity
\rightarrow to hepp in piscuter recovery
\rightarrow develogment $\&$ terting, onp
\rightarrow to cinfralized the Server afmenisfration. Adrantages of Serner tertuelsation

1. each birfucp Server canbe independenty rebooted.
2. Serner Virfuactation refuces the Carts because less hasfurare is required.
$5.8 \quad 310 \mathrm{~K}$ ard File level Storage Virstuatization
Sturage vistualisation Serner

\rightarrow procens of presenting a ligicatriew of physica Storoge ressurces to houfs
\rightarrow Legican stirage apperars and behans as physi col stroge direotty connetad to hois.
Benefits of Strage Kirtacisation
\rightarrow Frevean Itrrage ufieisation
\rightarrow Adding or deleting Strisoge arithonf aftecting applecation's aralobirity.
$\rightarrow X[m$ - disjeptine data migration.
3lock tevel stroge rertoalization
\rightarrow creates on abetraction lager at stroge Area Neferork, between Physicof storoge resacies arf volares presenter fo compute.
\rightarrow loses ristualisation appliances to perterm Mappitg operation

- - makes conderlying Storage in trasprution trampament to Compute
\Rightarrow Enobles signiticant Coit and resource optimization
 Vertualization Appliance

Heterogenaws Storage Arajgs
File Level Storage Virtualisation
\rightarrow prorides on abstraction in the XIAS/File Servers environment

- Eriminates drependencies befureen the kile ond its location
\rightarrow Enables mavement of kiles betareen XAS Syifems crifthout imporing crient accey
\rightarrow provides opporotunties to optinaze iterage uterizafion
\rightarrow implementeof usiag gobof namespuce

Malti-heopler XAS Syztems.
(NAS - Noturork - 1 Horkey Starge)
S.9 Viostuer Mochive Monitor

Some Cs Hypertisir
S.V Fotrasisueforo requirestents
peters to the 1.6
S.1 VLAA and VSAN

VLAA
$\rightarrow V L A A$ Standstan Virtuarl Locol prea Notarak
\rightarrow AVLAH allows seneraf noteronks to arork Viotuanly as one LAA se ot the most beneficiof elements of a VLA+1 is that it removes latency in the retarary, which lates niturat nesousces and inereare netarm efficiong.
\rightarrow in adition, VLAts are coneateq to provide legmentation ond assilf in issues like rebrity, netarork management ant Sobbbicity Troffic pafturns can ceso earily be cortralleop

\rightarrow VLAts Can Spread aerory matiple Surithes, with lowh $h^{\prime} A x \mid$ being treated a its own semenct or broofcost domain. This means thap lsome broofcoute of ento the heturonk aill be Suritched only betarcenthe paots writhin the Same VLAA .
\rightarrow AMAN acts like a physical LAAt, but if allous hosts to be grouped fryether in the 8 ane brougcant formain Qven if they are not Connected to the S arme Saith.
\rightarrow Here the moin resons Why $L L A+I s$ are bred (Advartages)

- VLAtts gon crease the number of broalcut domains while deerecsing their size.
- VLAtis requer bearrity nirk by. refoiing the nuenker of hreps thot peceine copies of tromes that the Swifeches florg.
- Hentr you can keep houts that holf Senitive dafa on a Separate VLAL to cimprove Securrity.
- You can Coleate inore tlewble naturark designs that group wers by pepartinontintteat ot physicol lication.
- neterrok changes are achiere of with lase by juit configuring a port into the apropriafe VLAH.
VSAH
\rightarrow VSAA Stanels for hirtua storage Are: Meforsork
\rightarrow VSAA is a logica partitioning coreated arith a phgfrical starage area nefariok.
\rightarrow This implementation model of a starage ristalization technique divides and allocotes some or an entire itarage area netarark into one ur mere logico SAtis to be weed by internot oor externat Services and solutions.
$V M \quad V M \quad V M$
VA4 Dafartine

Manguerent Agtarrouc (VEA4)
\checkmark motion Lstwerk (VLAXI)
Viotuef Maseine Netwate) ($V U N$

The benefits of VSAA include

- performance, Since the local Server Can access data of foul speed and lou latency
- Lie infrastructure lost, Since there are no neturoked storage appliances.
- High foo Scalability - Simply put, ald more sealers and got more storage
- Ho bar storms Brice os/app itrek images are stroud locally.

Chapter - 6
cloup Security
6.1 Cloud Security Fundamentof
cloue Becurrity Consints it

$$
\begin{aligned}
& \rightarrow \text { Set of poricies } \\
& \rightarrow \text { Controls } \\
& \rightarrow \text { procedures } \\
& \rightarrow \text { Ternologies. }
\end{aligned}
$$

that cerory together to protect qrap bang Syatams, dota, \& insratrueture.
\rightarrow Service derivery depenets upon the cativigueof cloug Rervice proviter or the croug Recurity silutions.
5.2 Clood Security Sertices
\rightarrow odentity orl Accers managemant Provites Contris for asurey cdenties and aecers manajement.
\rightarrow Pata Las Prevention monitaring protecting and heritging the Recernity or data af mest, in motion and lue in the clowd and on-premeses.
\rightarrow Secerrity intarmation and event managament Syrtems acept 16 g and ahent cintormation
$\rightarrow \frac{\text { Businels Confinuity }}{\rightarrow \text { and taleater selivery }}$ are the measures forigned And implemented to enterne operafiono कrebiliancy in the event of ony Sirtice interruptions.
\Rightarrow Nefarork Security provide dea with Seurity confrol whith in a cloud entiromment is genvrally Provided through lirtuap
dorices. dorices.
\rightarrow Eneryption, There ane, birtinctive aggsithms. thay computationaly ditricat or olment impracficoble to break.
6.3 Cloud Security Design Pirinciples

二

1. Governance fromeavork
when procising a cloup service, enyure that
the Supplier has a suitoble security genernance the Supplier has a suitoble secusity gerernance tramearrt in ploce. A gonemana tranearork wiil ensure that procedore, personnes, physicia and teeknical (entrols remain etherfive through the liketime or Sarvices.
2. operational Secersity

The Service proviter Should hake proceues ard procedures in place to ensure the operationct security of the Sestice. The ssorvece cerill need to be operated and ranaged Becurely in urfler to detreet corprotect aftaeks againt it.
3. Dapa in tronsif proptection

Consumer data transiting neferork Shront be atequatry proteeted agoint integring cand confitentiatity. This should be cechiered hia network protution and erirgption.
t. Assuct Pretection ord resitionce consamer tata, and the assets storing or procelsing it, should be protected ogainst physical tompercy, los, donage er seizure.
5. Separafimbeturien Consumers

Segarafion betaven ditkerent Consumers or Service prenents one malicious
6. Identity and austhentication

Conpaner and Serhice provider aleey to ofl service interface should be Constrained to outhenticaper and autherized infivifuole.

Scanned by CamScanner
\rightarrow AII Cloug Serrices crill have Some requirement to identity and outhenticate lesers wishing to celems service interfaces.
\#, Secure denepoyment
Servias Should be designed and denepoped io iqenting and mitigate threats to their security.
8. Audit intormation provision to conpunens conscons shruld be provides With the aadit reeorts they need to monitor aecess to their service ond the data helf crithen it.
9. Disatter Recovery

A Disaster Reconisg is the procen by which an arganization can recour ang alesy their Sottarame, date, ond hasfarare
0.4. Seleure Cloud Sotturame reqaimaneits

Pynamic Rexk Arremment
\rightarrow Enterpoise tramearork that Suppirt Markine to machine data collection for continocs monitiring
\rightarrow Compremensine astesmest for Vusnerohisitg behariar, contiguration and impact:
\rightarrow Reat-time fiscovery Copobicity bor arpets, appeications and data.d

Throco - Bared Detense
\rightarrow Defeng the fuy affoek heefors and priarity tasgets bored on infolligences.
\rightarrow Arotomoted asersments crith Countermeapre arareners.
\rightarrow X10 impuef to avaiohieity or pertormance of coritical Syptems.
Maniforing acrols setres of pomaing
\rightarrow Integrafion ot IT risk data orenents with Cyber phgricof dita for imporef decisions p hish-lenef decilsion Supporp Syrtams.
\rightarrow Hondling Big Security data.
6.5. Moup Secarity poricies
\rightarrow Selurity poricy is on oherall generof stefement propueed by Senior management, a kepectet pricy boorg ur Committer of an organization that tictates whot role kecurrity ploys witheh that organization.

There are dilterent types of Security poricies
(1) Requationg

- fegulatiry pricy ansares that the oinganization is following Standarts Set by specitic infuitry reguations These poricies that an onguization mart imptement due to compliance, regaration, or other legal riquirements.
- Thise componies Canbe tinanciof intitations, pubric ufieitiles, or some other type of argonization that aperates in the pabsic intarest.
(2) Aglising

Aprisury poricy Strangly advises. emplogers on the beharions and activitas which shoult and shoold not take place withen the ungaization. There poricies. are not mondotrong but are itrongly? Suggextet, perhops with Sericus Consequences defined.
lailare to bollow them will gesult in Consequeness swh as formination or a Job coetion cearning. A company with Suech poricies cuants mutemplogees to considger poricies manfotory.

Scanned by CamScanner
(3) Intormative
\rightarrow The parpose of this pobicy is to commenicote intormation to a Specibic axdience that cuafience ès generaply any ingiviquap whothes the apportanity or Cause to read the poricy.
\rightarrow Tintormative pricies typically arry less chportance than regufatory or adrisong prlicies, thay Can Carry Afrong mevages ofry specinc Srituations to the oudience.
6.6 Clrad Computing Security Challenges

Cloud computing Secersity Clallerges. kollinto three brood Categenies
(1) Data protretion
\rightarrow Securing your data both at rext and in transif.
(2) Luss Acthentication
\rightarrow Lerviting access to dapa and monituring who Geers the tata
(3) Discuter ary Data Bean

Centengency plancing
Security insues in Cluat compating
(1) Data breaches
\rightarrow it is an incident in which sensetire, protected ${ }^{\circ} r$ contridention data has patentially hieved er stolen or ured by on endiriqual cenarthorized.
(2) Dapa Lous.
\rightarrow rafumbe data desappean into the eitheer whthout a trace.
(3) Accour ur service trattic Hijuking
\rightarrow An aftacker gains wecess to your aecout he or she can eapesidrep on your artivities and redirnct your ceients toillegitimate Sites.
(4) safure Insecure Interbecus and APIs
\rightarrow Clrad Computing providers expore a Set of Sottanare intertaces orAPIs that curtomers lese to manage and interoer with Cloag Serrices.
(5) Deniog of Serrica
\rightarrow Dos qutages Can Carp Serrice providers Cuntomers ond 1'rove pricey to Cusfoners Cuho arre billed boured on \ddagger cisk Apoee conscrmed.
(6) Maticious insidens
\rightarrow c con be a current or former emplogee, a contractor or a businey portried liko gaeter gains Dccess to a hetwork, Syrtem, or data for Maricious parpores.
(F). Shared fechnisg Vopnerobieifiles
\rightarrow Clrad Sestice providers shane. entrastrocefure, plaftoms, and applications. to deliner their Serrices in a scapable arag.

Chapter 7
clact Compating Securty frehtoetare

- Thenibe al Clout architicture motels requere performance management tris and strategy, the secarity arehitreture laries bareq on the type of clrad model
(1) Solturare-as-a-Sertice (SaaS)
(2) Intrastpocfure -as-a-Serpice (Iaas)
(3) plafform-as-a-Sestice (paas)
if is importar to disfinguich the ditresent seorices motels., as the crood Secusity Ariance notes: "Ias is the loundation of al cload services, anth paus builting? upon Iaas, onf Saas in turn buil ting upon poas.

Presentation Mobisity prosertation
Apprications
para Meratota Content ontegration and Mitlleware AすJS core Conneckirity tqeeinging! Absporetion Harfuare Focirties

Ias clrad Compating Secusity Arehiteture
\rightarrow This inroatracture provides the storoge and hefercorking Components to cfoud heturating
if rolies heavidy on application progranming inferfores ($1,5 \mathrm{~S}$ s) to allow enterpreses to manage and interoet Gith the Croad. However. Cloup ApIs tent to be calsecure as thay are open and readily areasible on the network.
\rightarrow The Cloud Serrice provider (CSP) haulles the security of the inkrastructume and the abrtraction layers.
Iaas cloug Computing Service models nequine these additionaf security beafures

- Virtual lneb apprication kirelarals placed in frout of a luebsite to. protert ogains maparane.
- rivtao nefurdork-bared kinearalls loceted of the cload neterrat's edge that guasts the perinater.
- Virstexp racters.
- Fntrusian Detretion Syefems and Introsion propention Sysfems (IDS/IDS)
- Nefurork Segmentation.

Soos cprod Computing Security Architecture
\rightarrow Saes Cerpoily horps Softerare and data thot are acersible ria a brousser.
The enterprise namrally negotiates with the Cln-p sertece proviter the terms of lecurity ownerskip in a legot Confraces.
\rightarrow Cload Accus Secority Brakeri (CASB) play a Centrap role in discirering security cisues Within a saas croup Sertice mody as it logs; audits, provides Gecen Control, and oftentime inclapes energption Copabicities other Security boafumes torthe Saas cloud entiranment chclade

- Loggirg
- Ip nerprictions
- API gotearays.

Paas Clowel Compafing Secisity Arekitecterre
\rightarrow clow Becurity Architecture detines paas as the "deployment of apprications cerifhoat the cirf, and complexity or buying and manageing the centorlyirg harfarave and Sottavore provisiming hoxting Capobicities"
\rightarrow The Clued Serrice prorider Secures a hagusity of a paas cloud serrice mody. However the Secusity of apprications neyf cuth enferprise. The essention, components to Secure the paas clood inclade

- Logging
- IP retpretions.
- AFI gotecrags
- Cloat Acley Security Broters.
T.2 Gnformation Clarsilication
\rightarrow Intormation clavsitication is kandamentet to assef management, riat asrelsment and the optinat we of Security conpols withen the IT intsartrueture of any organization.
\rightarrow The aim ot our information eqarification program is to help arganopations improve the effectiveners and efficiency of controls oppeied in protecting the confeqentiolity, Integrity and Araipbivity of the cabormation

7.3 Vistual private Neturarks
refers to the CNS Chopter-7 (7.4)
1.t Pubric Key and Encryption Key Managenent
\rightarrow Encryption is a procens that cues ofgorithms to eneate dota as liphertexet. The ciphertort Can only be made meaningty agoin, it the person or application acressing the dato has the dota energptien Keys necevary to decofe the cephertent. So, of the data is Stolen or aceidentolly shares if is infecipheroble, thates to date encrgption.
\rightarrow Encrgption Key management is the apministration or tacks involned with protecting, stroing, backing-cus, and organiziag eneryption kays.
\rightarrow Hish protite data leases onf regutatary Compliance requirements hare Caused. a framatic increase in the cise of encryption in the enterprise.
\rightarrow A energption key management Syxtem inclodes generation, exchenge, Sturage, lese, dectruetion and replacement of eneryption. Keys.
\rightarrow Thre are severop eneryption key monagement spantarts efforts cenderarag. The bert Knran is the Kuey Manogement inferrperobicity protecl (KMIP). The goat ir KMIP is to allow ckers to aftach ong encryption derice to a key managoment syrxem.
7.5 Disiter Certiticotes

Defers to the CXIS Clopter-4(4.1)
7.6 Kuy Management
\rightarrow The moin aim of kuy management is to genero. a seeret key beteveen tar parties and Store it to prone the Guthenticity betaneen Commanicating vers.
\rightarrow Xey management is the techniques which Suppurt Kley generation, Stroage and

- maintenarel or the Key befureen authroized cesers.
\rightarrow Kly monagement plays an important tole ch coyptography at the basis for Seusing cogptograptic goots Contiqutiality, authentication, data integrity, ond digital. signatunes.
\rightarrow Basic parpasi of fey managument is Kuy generation, Key deitribution, Controlling the ase of Kays, updating, destruetion of Kuys and key buefup/recoverg.
Following point to be execuped in fey managoment
(I) Lrer Pegirpation
(2) Crer griticlization
(3) Key generation

Kay grutalation
(5) feey registoation
(6) Nurmal lase
(7) kuy backay
(8) Kuy usdate
(9) Key de-googentation ond revecation.
7.7 themexay Conts

Home alsignment.
7.8 Implemesting sdantity Manageneat
\rightarrow Tdentity and tecay eqangement encompases the componento ony poricies necemmy to contril ant track bere identities any aecen privileges. For IT ressares, entiranment and Syetems
\rightarrow Specikicaly, Identity ard Aecen Monagemant mechanesm exirt as syetem Comprise or Foor main Components.
(1) Auttentication
(3) Autherization
(3) Ceser managament
(4) Crefentiof Monagement.
(1) Authenpication
ussmare and paruart Combinations. nemains the moy Common torms of lier arthertication manageel by eftentity and tecey Management. which con also Supprost disito Signatares, disita (ertiticate, biometric hartarame (finger print), Speciotizet Sotterare (Vrice anatysis)
(2) Arthosization

The couthorized Component defined the correct granuerity for accey Contrils and oversees the nelationship betereen iqentities, aecess Canprol rishts and IT neswre drailability.
(3) user M onagement
felated to the afmenciprotive Ceyability of the syifem the wer management progpan is responsible bor nees ceser identities and, aerey groups, "resecing the paywarts, difining passwrord poricies and managing the prexileges.
(4) Crepentic Monagement

This syrtem establiches identities, cuery conprol rues. for defineg ciser accoants, which mitigates the threap of insulticient a therrization.
\rightarrow The Sepontity feces Monagervenf mechanism is primarily useed to cocenter the insutficient Authorization, deniot of serrice, and overlapping trout bouparies threats:

F-9 Controls and aeronomic System Avtonomic craputiong
\rightarrow it is inctiated by IBM
\rightarrow it is a Syetern that Sapporis Conputing to peotorm and arook arithry any oufer Conłrel
\Rightarrow Aim is to thave the Computer Carry out corificas bencfions arithouy any human intarvanfion.

- Koy elements of Qufonomi' Computing
- Knous Configare ipselt
- optimises efrelt
- Hear etselt
- profect itratk
- Adopt itselb.

Autonomic Compating Arekitecture

What is the Memory Card?

A memory card is a type of storage device that is used to store videos, photos, or other data files. It offers a volatile and non-volatile medium to store data from the inserted device. It is also referred to as a flash memory. Commonly, it is used in devices like phones, digital cameras, laptops, digital camcorders, game consoles, MP3 players, printers, and more.

History of Memory Card

The flash memory is the basis for memory card technology, which was invented by Fujio Masuoka at Toshiba in 1980. Later in 1987, it was commercialized by Toshiba.

Types of Memory Cards

There are several types of memory cards in the market, most commonly used types of memory cards are given below:

- SD Card
- MicroSD
- SmartMedia Card
- Sony Memory Stick
- CF (CompactFlash)
- xD-Picture Card
- SDHC Card
- MMC

SD Card: It is one of the most common types of memory cards, stands for Secure Digital card that is designed to provide high-capacity memory in a small size. Mainly, it is used in numerous small portable devices such as handheld computers, digital video camcorders, digital cameras, mobile phones, etc. Approximately, more than 8000 different models and over 400 brands of electronic equipment use SD technology. It measures $32 \times 24 \times 2.1 \mathrm{~mm}$ and weighs approximately 2 grams and is considered a standard for the industry due to widespread use.

MicroSD: It is a type of removable flash memory card that is also known as T-Flash or TransFlash used for storing information. SanDisk developed the first microSD card and approved as a standard on 13 July 2005. It is often used with mobile phones and other mobile devices that are available in sizes from 128 MB to 4 GB .

Some of the laptops include a feature of the MicroSD slot that allows users to insert a MicroSD to download data or files on the laptop. If you have a desktop computer or your laptop has no MicroSD slot, you can use a media card reader that also allows you to view data on the MicroSD card, and transfer that data to the computer.

SmartMedia card: It is a type of memory that comprises of a Flash-Memory chip that stores data. Toshiba developed the first SmartMedia card and had a smaller storage capacity from 2 MB to 128 MB . It has a single NAND flash chip that is embedded in a thin plastic card. It is the smallest memory card, only 0.76 mm thick, and easy to maintain a favorable cost than others.

Sony Memory Stick: It is a type of flash memory that was introduced by Sony in October 1998. It is used with Sony's digital cameras and other types of electronics for storing data. Almost all of Sony's products that use flash media use a memory stick as it is a proprietary Sony product. Sony released different kinds of memory stick as well as Memory Stick Micro, Memory Stick PRO, Memory Stick Duo, Memory Stick PRO Duo, and Memory Stick PRO-HG. The memory stick is designed with storage from 4 MB to 256 GB and a maximum capacity of 2 TB .

CompactFlash: It is a very small removable mass storage device that is commonly found in PDAs, digital cameras, and other portable devices. SanDisk Corporation invented the CompactFlash memory card in 1994. It is a 50 -pin connection storage device that supports 3.3 V and 5 V operation and relies on flash memory technology. It does not need a battery to retain data indefinitely. The storage capacity of the CF card is large, that is from 2 MB to 128 GB .

xD-Picture Card: It is a flash memory card designed for use in many models of digital cameras. In 2002, it was developed by Olympus and Fuji film. The size of xD (Extreme Digital) Picture Card is $20 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.7 \mathrm{~mm}$, and its capacity for the original version is up to 512 MB , and for the type H and $M / M+$ versions up to $2 G B$.

SDHC Card: It stands for Secure Digital High Capacity, based on the SDA 2.00 specification. It is an extended version of the standard SD card having storage capacity up to 32 GB . The SDHC works differently as compared to the standard SD card as it uses new technology. Furthermore, it provides different data transfer speed for consumers by using below three-speed class system:

- Class 2 - minimum sustained DTS of $2 \mathrm{MB} / \mathrm{sec}$
- Class 4 - minimum sustained DTS of $4 \mathrm{MB} / \mathrm{sec}$
- Class 6 - minimum sustained DTS of $6 \mathrm{MB} / \mathrm{sec}$

```
SanDisk e
32\textrm{cB}\mathrm{ mcop}
    F
```


MMC (MultiMediaCard): It is a tiny memory card as flash memory, developed by SanDisk and Siemens AG/Infineon Technologies AG. It is used to make storage portable among several devices, such as car radios, cell phones, digital cameras, car navigation systems, PDAs, printers, music players, cellular phones, video camcorders, and personal computers. It is much like to the SD card, and smaller as compared to older memory card formats, such as CompactFlash and SmartMedia card. The MMC provided storage capacities up to 128 MB until October 2002.

Advantages of Memory Card

1. Increased Storage
2. Cost-Effective
3. Reduce Phone Memory Consumption
4. Removable \& Portable
5. Non-volatile Memory
6. Easily Accessed on PC

Disadvantages of memory card

1. Break Easily
2. Low-class Card Can reduce Phone Performance
3. Slower than Primary Memory
4. Apps Disappear after Removing It

Chogter- 8
Market Bared management or cloods
8.1 Cloud Information Security Vendors
(1) Datad.g
\rightarrow patady selurity monituring deteets Clrap selmity throets in reot-time alerons groor apprications, neturrk, and inkratraeture.
\rightarrow it investigates security threats and provites detaited tata throush metrics, troes, ligs, ere.
(2) $\frac{\text { HoeferOne }}{\text { Haeterone is the no. } 1 \text { hacfer-pruened }}$ security platterm, haping argonizations fing and bén crificy Valrerabivities. belone they can be exploited.
(3) Intrader
grtrafer helps Orgaizafions to refuce their offeek laposure by providing an effromtens cyberseaviry silution.
(4) upher
cipher Can protect your internet-conneeted lervices and deveces.
(5) Sophrs

Sophos is a hareforone and Soltwane Security Company that prevides Co-vrecrated security between tirecrals and the end pointy crith geof-tine aptitude.
(6) Hytruis
\rightarrow Atytrut is a clrad Security Antimation company that has the Cutomated the Security controls. related to netarorking, Compating, etc
\rightarrow Hyfruit olters lavion servius like prad ard Fistadization Security, Cloup eneryption, energstion key management, Quyomated complionce efe.
(F) cipher Clurel

Cighercloag is a privateyy hel leating clood Security Compang that propects your dato Mowlesty and nire effectivaly lig encirporating dota monitroing $\&$ protection, rask onalgsis ant gray defection.
(8) poratpocht
provpront is a torrmast security Ond Compliance Compong thot itters enterprise anf comparote leval croel baed encorgstion silifions.
(g) Ners\&upe

Netskope is a chiet Clap Security Compang that uses some patented technology to proride seurity orer havious hefucorks like semote, corprrate, mobile, ete
(10) Twistly

Thintlock cs a privately held information teehaligy and Sertioes compang that provides unintrrupted and end-to-end securrity tor containerípeg appeications?
S. 2 Cloud Foderation, Charactexization Coup Federation is the practice of interconnectiong the Cluod Computing envisonment of ters or mone cloup service previders lor the parpise of loog bafanciry anproviding Serrices to the users.
Example

Aglvantages of Clarel Feeferation
(1) Laod haparing \& Capacity manazment.
(2) Scating tota to ather cloof Sesticu provitess
(3) etricient use of verounces.
(4) provertation prevention lrem taipares.
(5) provention brom hertox-locking
Q.3. Cloud Federation. Stux

Cload Feperation staek is afs. known as Lenel ot Cloup federation
(1) Cenceptecop Lerep
of this lenel rarious needs to fointhe chrop beperation is define .

Feafures

- mofirations
- Advantages
- Trast agrement batween 1 Proveders.
(3) Logical \& uperationot lekel
at the lenel policies \& roues tor inferoperation are defined.

Feafurnes

- Teterafions moder
- CSP agrerment
- rasket 中pring modes.
- Searece lenes agrecout.
(3) This tenet Intsatpuctural Lekep

This lenel Alfnemes the terkrical challenges introthet in enabling hetrogenous cpoup.
Detberent ierce

- Proticel, Intertcues $\&$ standards
- programming Intbrperations.
- Feperatian Platfioms. (Ginfercloof, RESERVOER)
S.A Thirg Party Clend Services

Example
Firel party

Thiors party
AWS
Secont party
Enduser/crient
(Amazon wer

The thisod porty Cirud Services is the Segrices in which user crants to aequine when he/sine is not getting that Service with alquired or hered cloudService proveder.

Some or the thind pasty clrap Sernices are
(1) Amazon lueb Services.
(2) Microsort Azure.

Agrantages
(1) Maintenonce \& Support.
(2) Skilled Company with all the resources
(3) Security Senefits.
(4) Cost apvantages.
D is adrantages
(1) Secumity arorries.
(2) Laek of Control
(3) potention cost drawboak
8.5 Case Study
(1) Microsist Azure
\rightarrow previoulf CVingoms Azure
\rightarrow Supports Jas and paar
\rightarrow Supprots extensive Set or Services toquick create, deploy and manage applications.
-7 thany programming languges and framowrorks are Supported.
\rightarrow Araipable across a Cuonfaide Mecruairt. managed datacenters.
Azure Sirtices
\rightarrow Compute
\rightarrow Mobile Services
\rightarrow Strage Services
\rightarrow Data manogement
\rightarrow merraging
\rightarrow medra Servicas
\Rightarrow Cantent Derivery Network (CDN)
\rightarrow Deneloper
\rightarrow Monagement
\rightarrow Mocline leorring
(2) Arazon lueb Services (AWS)
\rightarrow Alus is a Comprehensine, evilving cloud Computing platform privided by fimazon.
\Rightarrow Supprops Taas, paas, Saas.
\rightarrow Ahs seories Con olter an organization twis Buckes compute pocier, doterbase storage ant content querery Services.
\rightarrow Al'S launchet in 2006 from the enternationof inkoufrueture that Athazan. Com hait to handle its online retail oplrafions.
\rightarrow AWS was one of the Lersit Companies to introfuce a pay-as-you-go crond compating model that Scates to provide currs with compute, storage. "r throushout as needed.
Aurs Services
\rightarrow Compute
\rightarrow Starge drataces
\rightarrow Dafa Managament
\rightarrow Migration
\rightarrow Hybrid qoug

\rightarrow Develpment tools
\rightarrow Manogement
\rightarrow Monitoring.
\rightarrow Solerity
\rightarrow Govamonce
\rightarrow Brg tota Monagument
\therefore Artitice of ontelligence

- Mobike deveforment
-rinevsaye \& rfotification
$\frac{\text { WPAP }}{\text { visted }}$ private APeforork
(1) What is URA?
(2) why you shoulf use a UPY
(3) How Does a VPN works?
(4) Types of VPNS

5) Adrantogus.
6) Disodrantoges
(1) What is VPA ?
\rightarrow VPN Stands for Virtued Privape Netarook
\rightarrow VPA is an encropted convection over ortarnet brom a device to neferoras:
\rightarrow The earroppted Connetion helps ensure that Senstine data is saboly transmitted.
(2) Why you shoulp use a V喅?
(1) Brouse the wheb Securrely on pubric witi
(2) Sane money shapping online
(3) Auproatically Encrgpt entrything
(4) gmporine online Goming spees
(5) Enjoy private and Selare brice chat
(b) Complete senstine Research Cvithout interturence
(J) complefely privote Callabroation
(3) How Does a VPA wasks.

Branch offile

(grdia)
Stap-s
Branch olfice in gndea pranstar the dafa through the heIp of VPA crient.

Step- 3
VINP Client uses the encryption technique

Step-3
Dafa Gill he passed through the tunnef Which is secarred. And that farneting uses the two prorto Cl
(1) PPTP (poent to point Toneling protocol)
(3) Ipsee (Intronet Protoce) Secarity)

SFep-4
affur that q ata, will be decryptag through the VPM gatecray is seared.
Stap-5.
of last dofa will be dedivered to the moin attice. (pubai)
(0) Tgres of VBAP
vistuag Privape Nefurork is basicully of 2 types
(1) Remite access VPY
(3) Sita to Site VAY
(1) Remote acces vpp
\rightarrow Remrte Access VPA permites a wer to Conneef I a privafe neturrk and alces its seanices and Ressorres nemstety.
\rightarrow The cannecfion befareen user and pritate neforork occurs through the gntronet and Connufion is securre and private
(3) site to site VPM
\rightarrow A site-to-site VPN is also cotleg as Rooterto Router VPAP and is commmly used in the large
Companies oor organizations. Companies oo organizatians.
\rightarrow use sife-to-site VPNP to connecf the neferock of one office locotion to the nefurgly of onother otfice lecation and if ofso tur types.
(5) Ontranef basid VPN
turen Sevaral offices of the same Compong are Conneeted using Srite to sete Vpel type i) Called intranet based VPts
(7) Extoned basel hPF
when Companies ase sito to site VPxP Type to conneef to the office of Typer to conneet is called Extronet bosed
anctier Compang it is cap.
Vis.
(5) Adrentages
(1) Enhance Security
(3) Remote control
(3) Shane Files
(4) cinblock websites and hypass bilters
(5) Better Pertormance
(b) Reface Costs.
(6) Disodrantages
(1) it might he ditticait to Set up for Buriners users.
(2) it migh add mare cast to your neterrals eonnection
(3) it can slow diwn your internat speed.

Chajter.
Hagous
$\therefore 1$ Intredaction: (traparp is denelper by Apocke)
Hadoors is an
open srasce
Sitterore krane cuork
Which proviges huge Data stroage
"Hodirg is an open Sirurce sotterare bsamedork cuhich huge dath Stroage tacisity"

Atrantages
\rightarrow Compating prwer
\rightarrow Strorge
\rightarrow Foult Tolercence
\rightarrow 末lenibcleity

$$
\rightarrow \text { Scabbilty }
$$

Drisodran-kges
\rightarrow Hodup is a kranelurt fro lange-scote. pricessing.
\rightarrow Hadcop croiften in Java and shell scripts.
\rightarrow Not kil kor Small tata
\rightarrow Securrity Concirns.
\rightarrow frogramming $m+d$ is reupritike
\rightarrow Joins of multiple datasets is compleer \$ Slow.

Hadup frechitecture
Hadous has taro mayus layers naxaly
(1) provessing/ Compatation Lajes (rlap-fepace)
(2) Strogge lager (Hagros Diupributef File
Syetem)

(1) Mapkequer

Map Requce is a parallal progromming motel boo croiting diefribatep appeictions derised ot grogle for efficient procesing ot large amoungs it dote Clivifi-fesabyte deta. sepis) on large clucter (thousongs is $n(f e s)$, fortctolerant manner.
(2) HDIS (Hopry Dectoibatil Tik Sytem)

The HPIS is borefon the Gingle Fite Syetom $(4 F 5)$ ent poovites a firfributed tike syitem that is derignod to ron on commobity herrfurare
$1 \rightarrow$ it is hishiy toult-tolerdat ond is designed - to be doployed on low cost harpurare
\rightarrow if provides hish throughput aecels to apprication data and is Suifable for applications haring large petaseits.
Hadres tramearork ass inclufes the bollowing tero modules.

Hodros Common/Common ufirifies
There are jara libramles end utirities colequired by other hodrry moductes.

Hadorp MRX
This is a fromevrok fro bos sekerfoling and queter mestarce management.

How Dres Hageng wark
Stes.
(1) \rightarrow Data is initially divided into dareatures dng tiles. Leies are devided into Cribtom bized blocks of 128 M and 64 M (Pretarasty 12814)
(2) \rightarrow These kiles are then tactribatey arress bosious clater noges for torrther processing.
(3) \rightarrow HOFS, being on top of the lucat bik Syrtem, Superveres the processing.
(4) \rightarrow Bloeks are sageicatel for handeng hordarone tailare.
(5) \rightarrow Cherking thay the Code cros expecupof Suerertialy.
(3) \rightarrow proforming the Sort hat toyes pare betwern the map onp replace stages.
(f) \rightarrow Sending the Bropted data to a Certain
competar. Compatar.
(8) \rightarrow arriting the dobugging loggs for lech job..

Big Data
F Big Data is define as data that is huge in size. Big data is a form curd to dereribe a Collection of data that is huge in size ont yet ground exponentially with time.
\rightarrow Big Do Chatytics examples Trequpes stock exinarges, Sociol media sines, let engine, etc.
9.2 Dafa Soures
\rightarrow Due to the Capabicity of processing hariety of dota ond rolume of data, dota Seores bor hadary ha cherease of Onf olong with that the complexity has increared enormously.
\rightarrow Lef's Look of some of the pafa sounces Cutich Can profuce enormons valame 't dota or cansistent dofa Continowily.
(1) Dafa Sensioss: The re are the thousangs of lensors, profueing fafa Continocily.
(2) Makine Data: proquce dote which Shar ϕ be procested in near reattime for arrifing huge 1088
(3) Texco pata : CDR (Con Defail Peeurp)) and other teleom dota generates hish rolare of pafte
(4) Hectthcare system dota: Genes, images, $\overline{A C R}$ relerts are contruefured orf Complex to process.
(5) Sociol media: Facebrex, Tartfer, gergle plus, YouTube, onf others get a huge volume of qota.
(b) Gerlrgicol Data: SemiCenfuctors and Other guologic of data proguce.
9.3 Date Storage and analysis
\rightarrow The problem is Simple: While the Storage Copocities of harp primes have increase of massively over the yeans, access speeds the rate of arkich data can be read from drives.
bathe not Kris.
\rightarrow one typical drive tram 1990 calve Store 13 tom B of data and data transfer speed of $4.4 \mathrm{MB} / \mathrm{s}$, So you est covet read all the data rom a Foll drive in around Fine minutes.
\rightarrow over 20 years later, one terabyte drives are the norm but the transfer speed is around \mid wimps, s. it takes mane than ter colarahalt hours to read all the data of the firs.
\rightarrow This is a lag time to read all data on a Single prive and wrifing is even stomer. The obvious cray to redace the timce is to read from multiple bests at once imajene It unehol 1 or quines, each holting one huratredth of the pata. Cororting in pasally che loug read the the in cender tur rinutes.
\rightarrow thels pasalel natare is ceroning in maprequce ot hadroy concept ond also wook ind HDFS (Hrowp Distribated File Syetem).
\rightarrow The etroage is provifed by HDES and andysis by Mapfefuce in hadrup concept.
9. 4 Comparision with other Syotem

Ditkerence betaven felatind Dafabare Manajement Syatem (RDBMSS) and Hadrap.
RDBMS

Hadup

1. Tratifionaf gow- column bove databores, baicolly cused tor data iforage, manpalation and potrieval
2. in open-srarce Solfuare lised sor stoxiag dota ard bening apprications or procenes concurruenty.

RDBMS
2. In thes structared
\therefore data is mustly precessed
3. if is beit suitedter OLIP (oneine 万aracetion porcesing) entrisinment

- if is less Scotoble then Hodur

5. Pata narmabization is required in RDBMIS
6. if stroes transfomed and aggregated dota

- if has no lotency in rexponse

8. The data Schema of RDBMS is Static type.
9. Hish pata integrity araj|chle
10. Cosp is appeicable for licensed sotturare
11. in thes bath spuctariof and con ry ruetared dota is prucessed.
12. it is bext guapl for BII dota

4 it is heshly Scuable
S. Data normalization is not required is hadons
6. if stares huge volune ot data.
7. it has some latency in rusponse.
8. The fata Schena of Haduy is Aynamic type
9. Low data integrity arailable than RDeMS
10. Free of cors, as it is an open Source Sottume

